Package: growthrates (via r-universe)

November 18, 2024

Title Estimate Incidence, Proportions and Exponential Growth Rates
Version 0.2.0

Description Simple statistical models and visualisations for
calculating the incidence, proportion, exponential growth rate,
and reproduction number of infectious disease case timeseries.
This toolkit was largely developed during the COVID-19
pandemic.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1

Suggests downloader, fs, knitr, rappdirs, rmarkdown, here, jsonlite,
readr, stringr, testthat (>= 3.0.0), devtools, patchwork,
memoise

Remotes github::bristol-vaccine-centre/interfacer

VignetteBuilder knitr

Imports dplyr, magrittr, nnet, rlang, stats, tibble, tidyr, locfit,
lubridate, scales, tidyselect, ggplot2, glue, purrr, EpiEstim,
interfacer (>= 0.2.0), ragg

URL https://bristol-vaccine-centre.github.io/growthrates/,
https://github.com/bristol-vaccine-centre/growthrates,
https://doi.org/10.5281/zenodo.7242761

Config/testthat/edition 3

Depends R (>=2.10)

LazyData true

Config/pak/sysreqs libfontconfigl-dev libfreetype6-dev libfribidi-dev
make libharfbuzz-dev libicu-dev libjpeg-dev libpng-dev
libtift-dev libxml2-dev

Repository https://bristol-vaccine-centre.r-universe.dev

RemoteUrl https://github.com/bristol-vaccine-centre/growthrates

1

https://bristol-vaccine-centre.github.io/growthrates/
https://github.com/bristol-vaccine-centre/growthrates
https://doi.org/10.5281/zenodo.7242761

2 Contents

RemoteRef 0.2.0
RemoteSha 334d6f64505eb3ee7382489327a311f1302de3a9

Contents
as.Datetime_period 3
as.time_period L. L e e e e e 4
breaks_loglp 5
covid_infectivity_profile L 6
cut_date e e e e e e e e 7
date_Seq e e 8
date_seq.Date L 9
date_Seq.numeriC e e e e e e e 10
date_seq.time_period 10
date_to_time e e e 11
doubling_time e e e 12
england_consensus_growth_rate 13
england_consensus_It e 14
england_covid L 15
england_covid_pcr_positivity 15
england_covid_proportion oo 16
england_demographics oL o 17
england_events 17
england_nhs_app e 18
england_ons_infection_survey o 19
england_variants Lo e 20
fdmy . . . o e e 20
GEOM_EVENLS . . . o v v vt et e et e e e e e e e e e e e e e e e 21
germany_covid 23
germany_demographics e e 24
is.Date e e e e e e 25
labels.time_period 25
[ogIt_trans e e e e e e e 26
max_date e e e e 27
min_date e e 27
multinomial_nnet_model e 28
normalise_incidence e e e 29
normalise_incidence.incidence 30
normalise_incidence.proportion e 32
normalise_proportion Ll 34
plot_growth_phase 35
plot_growth_rate e e e e 38
plot_incidence L e e e e 40
plot_multinomial L 42
PIOL_Proportion i e e e e e e e e 43
PIOLIt . o o o e e e 45

poisson_glm_model L 46

as.Date.time_period

poisson_locfit_model
proportion_glm_model
proportion_locfit_model oL
reband_discrete e e
T epiestim L e e e e e
rt_from_growth_rate L
rt_from_incidence
scale_y_loglp oL
scale_y_logit
tiMe_ag@regate v v v v e e e e e e e e e e e e e e e e e
tMe_SUMMATISE v v e e e e e e e e
time_to_date e e
wallinga_lipsitch

Index

as.Date.time_period Convert time period to dates

Description

Convert time period to dates

Usage

S3 method for class 'time_period'
as.Date(x, ...)

S3 method for class 'time_period'
as.POSIXct(x, ...)

Arguments
X a time_period
not used
Value

a vector of dates representing the start of each of the input time_period entries

Functions

e as.POSIXct(time_period): Convert to a vector of POSIXct

4 as.time_period

as.time_period Convert to a time period class

Description

Time periods are just a zero based numeric representation of dates with a time unit baked in. This
allows variable length periods (e.g. days or weeks), and fractional days to be represented in a
consistent(ish) way

Usage

as.time_period(x, unit = NULL, start_date = NULL, anchor = NULL, ...)

S3 method for class 'time_period'
c(..., recursive = F)

S3 method for class 'time_period'
x[...]

S3 replacement method for class 'time_period'
x[...] <= value

S3 method for class 'time_period'

x[[...]1]

S3 replacement method for class 'time_period'
x[[...J] <- value

is.time_period(x)

S3 method for class 'time_period'

print(x, ...)
Arguments

X a vector of numbers (may be integer or real) or a time_period

unit the length of one unit of time. This will be either a integer number of days, or a
specification such as "1 week", or another time_period. If x is a time_period,
and the unit is different then from that of x this will return a new time_period
using the new units.

start_date the zero time date as something that can be coerced to a date. If the x input is
already a time_period and this is different to its start_date then it will be
recalibrated to use the new start date.

anchor only relevant is x is a vector of dates and start_date is not specified, this is

a date, or "start" or "end" or a weekday name e.g. "mon". With the vector
of dates in x it will find a reference date for the time-series. If this is NULL and
start_dateis also NULL it will fall back to getOption("day_zero","2019-12-29")

breaks_loglp 5

used for subtype implementations

recursive concatenate recursively
value the value
Value

a time_period class, consisting of a vector of numbers, with attributes for time period and start_date

Functions

e c(time_period): Combine time_period

e [: Subset a time_period

e “["(time_period) <- value: Assign values to a subset of a time_period
e [[: Getavalue in a time_period

e “[[" (time_period) <- value: Assign a value in a time_period

e is.time_period(): Checkis a time_period

e print(time_period): Print a time_period

Examples

100 weeks from 2020-01-01

tmp = as.time_period(0:100, 7, "2020-01-01")
as.Date(tmp)

range (tmp)

min(tmp)

tmp2 = as.integer(as.Date(tmp))

testthat::expect_true(all(na.omit(tmp2-lag(tmp2)) == 7))

tmp2 = as.time_period(@:23, 1/24, "2020-01-01")
as.POSIXct(tmp2)

convert timeseries to new "unit”

tmp = as.time_period(0:100, 7, "2020-01-01")
tmp2 = as.time_period(tmp,1)

testthat: :expect_equal(as.numeric(tmp2), 0:100%7)

breaks_loglp A scales breaks generator for loglp scales

Description

A scales breaks generator for loglp scales

6 covid_infectivity_profile

Usage

breaks_loglip(n = 5, base = 10)

Arguments
n the number of breaks
base the base for the breaks
Value

a function for ggplot scale breaks

Examples

ggplot2::ggplot(ggplot2: :diamonds, ggplot2::aes(x=price))+
ggplot2: :geom_density()+
ggplot2::scale_x_continuous(trans="loglp"”, breaks=breaks_logip())

covid_infectivity_profile
The covid_infectivity_profile dataframe structure specification

Description

The covid_infectivity_profile dataframe structure specification

Format
A dataframe containing the following columns:
* boot (anything) - a bootstrap identifier

* time (positive_double) - the end of the time period (in days)

* probability (proportion) - the probability of infection between previous time period until time

Must be grouped by: boot (exactly).

A default value is defined.

cut_date 7

cut_date Places a set of dates within a regular time series

Description

The counterpart to date_seq_dates(). Take an original set of data and place it within a regular time
series where the periodicity of the time series may be expressed as numbers of days, weeks, months
quarters, or years, and the periods are defined by an anchoring date, day of the week or by reference
to the start or end of the input dates. This can either return the periods as dates or factors (e.g. for
plotting) or as a time_period for analysis that relies on a numeric representation of the date or
duration from the anchor.

Usage
cut_date(
dates,
unit,
anchor = "start",
output = c("date”, "factor”, "time_period"),

dfmt = "%d/%b/%y",
ifmt = "{start} — {end}”,

)
Arguments
dates a set of dates
unit a period e.g. "1 week"
anchor one of a date, "start" or "end" or a weekday name e.g. "mon" this will always be
one of the start of the time periods we are cutting into
output return the result as either a "date" (the default), an ordered "factor" with the date
ranges as a label, or as a "time_period". The result is named with labels referring
to the
dfmt the strptime format for the dates in the labels
ifmt a sprintf format for the period label containing %s exactly twice.
ignored
Value

a set of dates, times or a factor level, representing the start of the period the date falls into, where
the period is defined by the duration and the anchor

8 date_seq

Examples

dates = as.Date(c("2020-01-01","2020-02-01","2020-01-15","2020-02-03" ,NA))
fs = growthrates: :date_seq(dates, "2 days")

dates - cut_date(dates, "2 days")

cut_date(dates,unit="2 days", output="time_period")

A weekly set of dates:
dates2 = Sys.Date() + floor(stats::runif(50,max=10))*7

in this specific situation the final date is not truncated because the

input data is seen as an exact match for the whole output period.
cut_date(dates2, "1 week”, "sun"”, output="factor")

cut_date(dates2, dfmt = "%d/%b", output="factor”, unit = "2 weeks", anchor="sun")

date_seq Create the full sequence of values in a vector

Description

This is useful if you want to fill in missing values that should have been observed but weren’t. For
example, date_seq(c(1, 2, 4, 6), 1) will return 1:6.

Usage
date_seq(x, period, ...)
Arguments
X a numeric or date vector
period Gap between each observation. The existing data will be checked to ensure that
it is actually of this periodicity.
for subtype methods
Value

a vector of the same type as the input

Examples

date_seq(c(1, 2, 4, 5, 10), 1)

date_seq.Date 9

date_seq.Date Expand a date vector to the full range of possible dates

Description

Derive from a vector of observation dates, a complete ordered sequence of periods in a regular time
series, where the length of the periods is specified, as a number od days, weeks, years etc. E.g.
this can convert a random set of dates to a ordered complete list of 1 week intervals (or 2 month
intervals) spanning the same range as the dates. This has some interesting problems regarding
where to put breaks within a month or week. Often this is either based on a specific date (e.g.
yearly periods starting at 2020-01-01) or a day of week (e.g. 2 weekly periods staring on a sunday)
or maybe relative to the input time series (weekly ending on the last date of the data). There is also
a problem when we consider data that may have incomplete starting and end periods, which may
not be comparable to other periods, and we may need to exclude these from the result.

Usage

S3 method for class 'Date’

date_seq(x, period = .day_interval(x), anchor = "start”, complete = FALSE, ...)
Arguments

X a vector of dates, possibly including NA values

period the gap between observations as a number of days or as a natural language def-

inition of the period such as "1 week", 2 weeks’, ’1 month’, etc. If not given
this will be derived from the dates.

anchor defines a day that appears in the sequence (if it were to extend that far). Given

non

either as a date, or "start", "end" or a day of the week, e.g. "mon".
complete truncate incomplete start and end periods

ignored

Value

a vector of dates for regular periods between the minimum and maximum of dates, with the bound-
aries defined by the anchor.

Examples

date_seq(as.Date(c("2020-01-01",”2020-02-01", "2020-01-15", "2020-02-01" ,NA)), "2 days”)

10 date_seq.time_period

date_seq.numeric Create the full sequence of values in a vector

Description

This is useful if you want to fill in missing values that should have been observed but weren’t. For
example, date_seq(c(1, 2, 4, 6), 1) will return 1:6.

Usage
S3 method for class 'numeric'
date_seq(x, period = 1, tol = 1e-06, ...)
Arguments
X a numeric or date vector
period Gap between each observation. The existing data will be checked to ensure that

it is actually of this periodicity.
tol Numerical tolerance for checking periodicity.

for subtype methods

Value

a vector of the same type as the input

Examples

date_seq(c(1, 2, 4, 5, 10), 1)

date_seq.time_period Expand a time_period vector to the full range of possible times

Description

Derive from a vector of observation time_periods, a complete ordered sequence of periods in a
regular time series, where the length of the periods is specified, as a number of days, weeks, years
etc. E.g. this can convert a random set of times to a ordered complete list of 1 week intervals
(or 2 month intervals) spanning the same range as the dates. This has some interesting problems
regarding where to put breaks within a month or week. Often this is either based on a specific date
(e.g. yearly periods starting at 2020-01-01) or a day of week (e.g. 2 weekly periods staring on a
sunday) or maybe relative to the input time series (weekly ending on the last date of the data). There
is also a problem when we consider data that may have incomplete starting and end periods, which
may not be comparable to other periods, and we may need to exclude these from the result.

date_to_time 11

Usage
S3 method for class 'time_period'
date_seq(x, period = attributes(x)$unit, complete = FALSE, ...)
Arguments
X a time period vector
period the gap between observations as a number of days or as a natural language def-

inition of the period such as "1 week", 2 weeks’, ’1 month’, etc. If not given
this will be derived from the dates.

complete truncate incomplete start and end periods

ignored

Value

a vector of time_periods for regular periods between the minimum and maximum of dates, with
the boundaries defined by the anchor.

Examples

tmp = as.time_period(c(0,10,100), 7, "2020-01-01")
date_seq(tmp, "7 days")

date_to_time Convert a set of dates to numeric timepoints

Description

Using a start_date and a unit specification

Usage
date_to_time(
dates,
unit = .day_interval(dates),
start_date = getOption("day_zero”, "2019-12-29")
)
Arguments
dates a vector of dates to convert
unit a specification of the unit of the resulting time series. Will be determined from
periodicity of dates if not specified. If another time_period is given as the unit
then the

start_date the origin of the conversion. Defaults to the beginning of the COVID pandemic

12

Value

doubling_time

a vector of class time_period

Examples

times
dates

date_to_time(as.Date("2019-12-29")+0:100, "1 week")
time_to_date(times)

doubling_time

Doubling time from growth rate

Description

The unit of doubling times is always days.

Usage
doubling_time(x, ...)
Arguments
X a dataframe calculated from either proportion or incidence growth rate calcula-

tions:

e.g. A dataframe containing the following columns:

time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a time_period

incidence.fit (double) - an estimate of the incidence rate on a log scale

incidence.se.fit (double) - the standard error of the incidence rate estimate
on a log scale

incidence.0.025 (positive_double) - lower confidence limit of the incidence
rate (true scale)

incidence.0.5 (positive_double) - median estimate of the incidence rate (true
scale)

incidence.0.975 (positive_double) - upper confidence limit of the incidence
rate (true scale)

growth.fit (double) - an estimate of the growth rate

growth.se.fit (double) - the standard error the growth rate
growth.0.025 (double) - lower confidence limit of the growth rate
growth.0.5 (double) - median estimate of the growth rate
growth.0.975 (double) - upper confidence limit of the growth rate

No mandatory groupings.

No default value.

OR

A dataframe containing the following columns:

england_consensus_growth_rate 13

* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a time_period

* proportion.fit (double) - an estimate of the proportion on a logit scale

* proportion.se.fit (double) - the standard error of proportion estimate on a
logit scale

* proportion.0.025 (proportion) - lower confidence limit of proportion (true
scale)

* proportion.0.5 (proportion) - median estimate of proportion (true scale)

* proportion.0.975 (proportion) - upper confidence limit of proportion (true
scale)

* relative.growth.fit (double) - an estimate of the relative growth rate
* relative.growth.se.fit (double) - the standard error the relative growth rate

* relative.growth.0.025 (double) - lower confidence limit of the relative growth
rate

* relative.growth.0.5 (double) - median estimate of the relative growth rate
* relative.growth.0.975 (double) - upper confidence limit of the relative growth
rate
No mandatory groupings.
No default value.

not used

Value

the same dataframe with additional columns for doubling time or relative doubling time plus confi-
dence intervals.

Examples

growthrates: :england_covid %>%
growthrates: :poisson_locfit_model (window=21) %>%
growthrates: :doubling_time() %>%
dplyr::glimpse()

england_consensus_growth_rate
The SPI-M-O England consensus growth rate

Description

SPI-M-O used a range of different statistical and mechanistic models to produce estimates of
the growth rate of the epidemic from various data sources (including with an early version of
growthrates).

14 england_consensus_rt

Usage

data(england_consensus_growth_rate)

Format

A dataframe containing the following columns:

¢ date (date) - the date of the estimate
* low (numeric) - the lower published estimate of the growth rate

* high (numeric) - the higher published estimate of the growth rate

No mandatory groupings.
No default value.

111 rows and 3 columns

england_consensus_rt The SPI-M-O England consensus reproduction number

Description

SPI-M-O used a range of different statistical and mechanistic models to produce estimates of the
reproduction number of the epidemic from various data sources.

Usage

data(england_consensus_rt)

Format

A dataframe containing the following columns:

« date (date) - the date of the estimate
* low (numeric) - the lower published estimate of the reproduction number

* high (numeric) - the higher published estimate of the reproduction number

No mandatory groupings.
No default value.

113 rows and 3 columns

england_covid 15

england_covid Daily COVID-19 case counts by age group in England

Description

A dataset of the daily count of covid cases by age group in England downloaded from the UKHSA
coronavirus API, and formatted for use in growthrates. A denominator is calculated which is the
overall positive count for all age groups. This data set can be used to calculate group-wise incidence
and absolute growth rates and group wise proportions and relative growth rates.

Usage

data(england_covid)

Format

A dataframe containing the following columns:

 date (as.Date) - the date column

e class (enum(00_04,05_09,10_14,15_19,20_24,25_29,30_34,35_39,40_44,45_49,50_54,55_59,60_64,65_69,70_74,75
- the class column

* count (numeric) - the test positives for each age group
* denom (numeric) - the test positives for all age groups

* time (as.time_period) - the time column

Must be grouped by: class (and other groupings allowed).
No default value.

26790 rows and 5 columns

england_covid_pcr_positivity
England COVID-19 PCR test positivity

Description

The coronavirus. gov.uk dashboard published tests conducted and positive results as separate data
sets for a range of geographies. In this case the data is combined with testing rate as denominator,
and positives as count for England.

Usage

data(england_covid_pcr_positivity)

16 england_covid_proportion

Format
A dataframe containing the following columns:

* date (date) - a daily time series
* time (as.time_period) - the time column
* count (numeric) - test positives in England on that day

* denom (numeric) - total tests conducted on that day

No mandatory groupings.
No default value.

1413 rows and 4 columns

england_covid_proportion
England COVID by age group for ascertainment

Description

An age group stratified dataset from

Usage

data(england_covid_proportion)

Format
A dataframe containing the following columns:

* class (character) - the age group

 date (date) - the start date of a week

 count (numeric) - the count of COVID positives

* denom (numeric) - the number of COVID tests performed
 population (numeric) - the size of the population at this age group

e time (as.time_period) - the time column (weekly)

Must be grouped by: class (and other groupings allowed).
No default value.

1050 rows and 6 columns

Details

* the coronavirus.gov.uk site for positive cases aggregated to 10 year age groups and by weekly
time.

* NHS test and trace date which reported regional by age group testing effort aggregated to
country level.

* ONS 2021 census population aggregated to 10 year age groups.

england_demographics 17

england_demographics England demographics

Description

Population counts by 5 year age group for England only from the 2021 census.

Usage

data(england_demographics)

Format

A dataframe containing the following columns:
¢ class (enum(00_04,05_09,10_14,15_19,20_24,25_29,30_34,35_39,40_44,45_49,50_54,55_59,60_64,65_69,70_74,75
- the class column
* population (numeric) - the population count column
* baseline_proportion (numeric) - the baseline proportion is the proportion this age group makes
up of the total.
Must be grouped by: class (and other groupings allowed).
No default value.

19 rows and 3 columns

Source

https://www.ons.gov.uk/file 7uri=/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/por

england_events Key dated in the COVID-19 response in England

Description

This includes mainly the dates of lockdowns, releases from social distancing measures and the dates
that new variants were first detected.

Usage

data(england_events)

18 england_nhs_app

Format

A dataframe containing the following columns:

« label (character) - the event label
* start (date) - the event start date

* end (date) - the (optional) event end date

No mandatory groupings.
No default value.

13 rows and 3 columns

england_nhs_app NHS COVID-19 app data

Description

check-in (social activity) and alerts (self isolation instruction) data from the NHS COVID-19 app,
aggregated to country level on a week by week basis.

Usage

data(england_nhs_app)

Format

A dataframe containing the following columns:

date (date) - the start date of the week
* alerts (integer) - the count of self-isolation alerts
* visits (integer) - the number of venue check-ins representing visits to social venues.

* time (as.time_period) - the time column

No mandatory groupings.
No default value.

137 rows and 4 columns

england_ons_infection_survey 19

england_ons_infection_survey
The england_ons_infection_survey dataset

Description

The COVID-19 ONS infection survey took a random sample of the population and provides an
estimate of the prevalence of COVID-19 that is supposedly free from ascertainment bias.

Usage

data(england_ons_infection_survey)

Format

A dataframe containing the following columns:

« date (date) - the date column
* geography (character) - the geography column

e proportion.0.5 (numeric) - the median proportion of people in the region testing positive for
COVID-19

e proportion.0.025 (numeric) - the lower CI of the proportion of people in the region testing
positive for COVID-19

* proportion.0.975 (numeric) - the upper CI of the proportion of people in the region testing
positive for COVID-19

* denom (integer) - the sample size on which this estimate was made (daily rate inferred from
weekly sample sizes.)

* time (as.time_period) - the time column

No mandatory groupings.
No default value.

9820 rows and 7 columns

Details

The data is available here: https://www.ons.gov.uk/file ?uri=/peoplepopulationandcommunity/healthandsocialcare/conditions:

20

fdmy

england_variants Counts of COVID-19 variants

Description

Data from the COG-UK and Sanger centre sequencing programme. The data were made available
through the Welcome foundation at Lower tier local authority level, and is weekly timeseries of
counts per variant. Variants were assigned using the tree structure of the Pango lineage. Different
sub-lineages are aggregated to the major WHO variants of concern.

Usage

data(england_variants)

Format

A dataframe containing the following columns:

date (date) - the end date of the week
time (as.time_period) - the time column

class (enum(Other,Alpha (B.1.1.7),Delta (B.1.617.2),Delta (AY.4),0micron (Other),0Omicron
(BA.2),0micron (BA.4),0micron (BA.5),XBB (Other),Kraken (XBB.1.5),Arcturus (XBB.1.16),Eris
(EG.5.1))) - the class column

who_class (enum(Other,Alpha,Delta,Omicron,Kraken,Arcturus,Eris)) - the who_class col-
umn

count (numeric) - the weekly count column

denom (numeric) - the number of sequences performed in that week

Must be grouped by: class (and other groupings allowed).

No default value.

479 rows and 6 columns

fdmy

Format date as dmy

Description

Format date as dmy

Usage

fdmy(date)

geom_events

Arguments

date a date to convert

Value

the formatted date

Examples

fdmy(Sys.Date())

21

geom_events Add time series event markers to a timeseries plot.

Description

The x axis must be a date.

Usage

geom_events(
events = i_events,
event_label_size = 7,

event_label_colour = "black”,
event_label_angle = -30,
event_line_colour = "grey50",

event_fill_colour = "grey50",
hide_labels = FALSE,
guide_axis = ggplot2::derive(),

Arguments

events Significant events or time spans
A dataframe containing the following columns:

« label (character) - the event label
e start (date) - the start date, or the date of the event
* end (date) - the end date or NA if a single event

No mandatory groupings.

A default value is defined.
event_label_size

how big to make the event label
event_label_colour

the event label colour

22

geom_events

event_label_angle

the event label colour

event_line_colour

the event line colour

event_fill_colour

hide_labels

guide_axis

the event area fill

do not show labels at all

a guide axis configuration for the labels (see ggplot2::guide_axis and ggplot2::dup_axis).

This can be used to specify a position amongst other things.
Arguments passed on to ggplot2: :scale_x_date

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks One of:
e NULL for no breaks
* waiver() for the breaks specified by date_breaks
* A Date/POSIXct vector giving positions of breaks
* A function that takes the limits as input and returns breaks as output
date_breaks A string giving the distance between breaks like "2 weeks", or
"10 years". If both breaks and date_breaks are specified, date_breaks
wins. Valid specifications are ’sec’, 'min’, "hour’, ’day’, "week’, 'month’
or ’year’, optionally followed by ’s’.
labels One of:
* NULL for no labels
* waiver() for the default labels computed by the transformation object
¢ A character vector giving labels (must be same length as breaks)

* An expression vector (must be the same length as breaks). See ?plot-
math for details.

* A function that takes the breaks as input and returns labels as output.
Also accepts rlang lambda function notation.

date_labels A string giving the formatting specification for the labels. Codes
are defined in strftime(). If both 1labels and date_labels are specified,
date_labels wins.

minor_breaks One of:
* NULL for no breaks
* waiver () for the breaks specified by date_minor_breaks
* A Date/POSIXct vector giving positions of minor breaks

* A function that takes the limits as input and returns minor breaks as
output
date_minor_breaks A string giving the distance between minor breaks like "2
weeks", or "10 years". If both minor_breaks and date_minor_breaks are
specified, date_minor_breaks wins. Valid specifications are ’sec’, 'min’,
“hour’, ’day’, *week’, "'month’ or ’year’, optionally followed by ’s’.
limits One of:

germany_covid 23

* NULL to use the default scale range

* A numeric vector of length two providing limits of the scale. Use NA to
refer to the existing minimum or maximum

* A function that accepts the existing (automatic) limits and returns new
limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If
the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()).

expand For position scales, a vector of range expansion constants used to add
some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

oob One of:

¢ Function that handles limits outside of the scale limits (out of bounds).
Also accepts rlang lambda function notation.

* The default (scales: :censor()) replaces out of bounds values with
NA.

* scales: :squish() for squishing out of bounds values into range.
* scales::squish_infinite() for squishing infinite values into range.

guide A function used to create a guide or its name. See guides() for more
information.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

Value

a set of geoms for a timeseries.

germany_covid Weekly COVID-19 case counts by age group in Germany

Description

A dataset of the weekly count of covid cases by age group in Germany downloaded from the Robert
Koch Institute Survstat service, and formatted for use in growth rates. A denominator is calculated
which is the overall positive count for all age groups. This data set can be used to calculate group-
wise incidence and absolute growth rates and group wise proportions and relative growth rates.

Usage

data(germany_covid)

24 germany_demographics

Format

A dataframe containing the following columns:
e class (enum(0-14,15-19,20-24,25-29,30-39,40-49,50-59,60-69,70-79,80+,Unknown, .ordered=TRUE))
- the age group
¢ date (as.Date) - the date column
* count (integer) - the test positives for each age group
* time (as.time_period) - the time column

* denom (integer) - the test positives for all age groups

Must be grouped by: class (and other groupings allowed).
No default value.

2070 rows and 6 columns

germany_demographics Germany demographics

Description

Derived from the Robert Koch Survstat service by comparing counts and incidence rates.

Usage

data(germany_demographics)

Format

A dataframe containing the following columns:
* class (enum(@-14,15-19,20-24,25-29,30-39,40-49,50-59,60-69,70-79,80+, .ordered=TRUE))
- the class column

* population (integer) - the population column

Must be grouped by: class (and other groupings allowed).
No default value.

10 rows and 2 columns

is.Date 25

is.Date Check whether vector is a date

Description

Check whether vector is a date

Usage

is.Date(x)

Arguments

X a vector to check

Value

TRUE if dates, FALSE otherwise

Examples

is.Date(Sys.Date())

labels.time_period Label a time period

Description

Create a set of labels for a time period based on the start and duration of the period. The format is
configurable using the start and end dates and the dfmt and ifmt parameters, however if the time
period has names then these are used in preference.

Usage

S3 method for class 'time_period'
labels(
object,

dfmt = "%d/%b",
ifmt = "{start} — {end}",
na.value = "Unknown"

26 logit_trans

Arguments
object a set of decimal times as a time_period
not used
dfmt a strptime format specification for the format of the date
ifmt a glue spec referring to start and end of the period as a formatted date
na.value a label for NA times
Value

a set of character labels for the time

Examples

eg = as.time_period(Sys.Date()+0:10*7, anchor="start")
labels(eg)

labels(eg, ifmt="{start}", dfmt="%d/%b/%y")
labels(eg, ifmt="until {end}", dfmt="%d %b %Y")

labels retained in constructor:

eg2 = Sys.Date()+0:10%7

names(eg2) = paste@("week ",0:10)
labels(eg2)

labels(as.time_period(eg2, anchor="start"))

logit_trans logit scale

Description

Perform logit scaling with correct axis formatting. To not be used directly but with ggplot (e.g.
ggplot2::scale_y_continuous(trans = "logit"))

Usage
logit_trans(n =5, ...)
Arguments
n the number of breaks
not used, for compatibility
Value

A scales object

max_date 27

Examples

library(ggplot2)
library(tibble)

tibble::tibble(pvalue = c(0.001, 0.05, 0.1), fold_change = 1:3) %>%
ggplot2::ggplot(aes(fold_change , pvalue)) +
ggplot2::geom_point() +

ggplot2::scale_y_continuous(trans = "logit")

max_date The maximum of a set of dates

Description

max.Date returns an integer and -Inf for a set of NA dates. This is usually inconvenient.

Usage
max_date(x, ...)
Arguments
X a vector of dates
ignored
Value

a date. ‘0001-01-01 if there is no well defined minimum.

Examples

max_date(NA)

min_date The minimum of a set of dates

Description

min.Date returns an integer and Inf for a set of NA dates. This is usually inconvenient.

Usage

min_date(x, ...)

28 multinomial_nnet_model

Arguments
X a vector of dates
ignored
Value

a date. 9999-12-31 if there is no well defined minimum.

Examples

min_date(NA)

multinomial_nnet_model
Multinomial time-series model.

Description

Takes a list of times, classes and counts, e.g. a COGUK variant like data set with time, (multinomial)
class (e.g. variant) and count being the count in that time period. Fits a quadratic B-spline on time
to the proportion of the data using nnet: :multinom, with approx one degree of freedom per class
and per window units of the time series

Usage

multinomial_nnet_model(
d = i_multinomial_input,
window = 14,
frequency = "1 day”,
predict = TRUE

)
Arguments
d Multiclass count input
not used and present to allow proportion model to be used in a group_modify
window a number of data points between knots, smaller values result in less smoothing,
large value in more.
frequency the density of the output estimates.
predict result a prediction. If false we return the model.
Value

a new dataframe with time (as a time period), class, and proportion.@.5, or a model object

normalise_incidence 29

Examples

if (FALSE) {
not run due to long running
tmp = growthrates::england_covid %>%
dplyr::filter(date > "2022-01-01") %>%
growthrates: :multinomial_nnet_model (window=21) %>%
dplyr::glimpse()

normalise_incidence Calculate a normalised incidence rate per capita

Description

This assumes positive disease counts are stratified by a population grouping, e.g. geography or
age, and we have estimates of the size of that population during that time period. Normalising by
population size allows us to compare groups.

Usage

normalise_incidence(
modelled = i_timeseries,

population_unit = 1e+0@5,
normalise_time = FALSE

Arguments

modelled Model output from processing the raw dataframe with something like poission_locfit_model
A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
No mandatory groupings.

No default value.

e not used
population_unit
what population unit do you want the incidence in e.g. per 100K

normalise_time The default behaviour for incidence is to keep it in the same time units as the
input data. If this parameter is set to TRUE the incidence rates are calculated
per year. If given as a lubridate period string e.g. "1 day" then the incidence is
calculated over that time period.

30

Value

normalise_incidence.incidence

a dataframe with incidence rates per unit capita. A dataframe containing the following columns:

time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period

incidence.per_capita.fit (double) - an estimate of the incidence per capita rate on a log scale

incidence.per_capita.se.fit (double) - the standard error of the incidence per capita rate esti-
mate on a log scale

incidence.per_capita.0.025 (positive_double) - lower confidence limit of the incidence per
capita rate (true scale)

incidence.per_capita.0.5 (positive_double) - median estimate of the incidence per capita rate
(true scale)

incidence.per_capita.0.975 (positive_double) - upper confidence limit of the incidence per
capita rate (true scale)

population_unit (double) - The population unit on which the per capita incidence rate is cal-
culated

No mandatory groupings.

No default value.

Examples

tmp = growthrates::england_covid %>%
growthrates: :poisson_locfit_model (window=21) %>%
growthrates: :normalise_incidence(growthrates::england_demographics) %>%
dplyr::glimpse()

normalise_incidence.incidence

Calculate a normalised incidence rate per capita

Description

This assumes positive disease counts are stratified by a population grouping, e.g. geography or
age, and we have estimates of the size of that population during that time period. Normalising by
population size allows us to compare groups.

Usage

normalise_incidence.incidence(
modelled = i_incidence_model,
pop = i_population_data,

L

population_unit = 1e+0@5,
normalise_time = FALSE

normalise_incidence.incidence 31

Arguments

modelled Model output from processing the raw dataframe with something like poission_locfit_model

pop

A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
* incidence.fit (double) - an estimate of the incidence rate on a log scale

* incidence.se.fit (double) - the standard error of the incidence rate estimate
on a log scale

* incidence.0.025 (positive_double) - lower confidence limit of the incidence
rate (true scale)

* incidence.0.5 (positive_double) - median estimate of the incidence rate (true
scale)

* incidence.0.975 (positive_double) - upper confidence limit of the incidence
rate (true scale)

No mandatory groupings.
No default value.

The population data must be grouped in the same way as modelled.
A dataframe containing the following columns:
* population (positive_integer) - Size of population
No mandatory groupings.
No default value.

not used

population_unit

what population unit do you want the incidence in e.g. per 100K

normalise_time The default behaviour for incidence is to keep it in the same time units as the

Value

input data. If this parameter is set to TRUE the incidence rates are calculated
per year. If given as a lubridate period string e.g. "1 day" then the incidence is
calculated over that time period.

a dataframe with incidence rates per unit capita. A dataframe containing the following columns:

time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period

incidence.per_capita.fit (double) - an estimate of the incidence per capita rate on a log scale

incidence.per_capita.se.fit (double) - the standard error of the incidence per capita rate esti-
mate on a log scale

incidence.per_capita.0.025 (positive_double) - lower confidence limit of the incidence per
capita rate (true scale)

incidence.per_capita.0.5 (positive_double) - median estimate of the incidence per capita rate
(true scale)

incidence.per_capita.0.975 (positive_double) - upper confidence limit of the incidence per
capita rate (true scale)

32 normalise_incidence.proportion

 population_unit (double) - The population unit on which the per capita incidence rate is cal-
culated
No mandatory groupings.

No default value.

Examples

tmp = growthrates::england_covid %>%
growthrates: :poisson_locfit_model (window=21) %>%
growthrates: :normalise_incidence(growthrates: :england_demographics) %>%
dplyr::glimpse()

normalise_incidence.proportion
Calculate a normalised incidence rate per capita

Description

This assumes positive disease counts are stratified by a population grouping, e.g. geography or
age, and we have estimates of the size of that population during that time period. Normalising by
population size allows us to compare groups.

Usage

normalise_incidence.proportion(
modelled = i_proportion_model,

population_unit = 1e+0@5,
normalise_time = FALSE

Arguments

modelled Model output from processing the raw dataframe with something like poission_locfit_model
A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
* proportion.fit (double) - an estimate of the proportion on a logit scale

* proportion.se.fit (double) - the standard error of proportion estimate on a
logit scale

* proportion.0.025 (proportion) - lower confidence limit of proportion (true
scale)

* proportion.0.5 (proportion) - median estimate of proportion (true scale)

* proportion.0.975 (proportion) - upper confidence limit of proportion (true
scale)

normalise_incidence.proportion 33

No mandatory groupings.

No default value.

e not used
population_unit
what population unit do you want the incidence in e.g. per 100K

normalise_time The default behaviour for incidence is to keep it in the same time units as the
input data. If this parameter is set to TRUE the incidence rates are calculated
per year. If given as a lubridate period string e.g. "1 day" then the incidence is
calculated over that time period.

Details

This scales a proportion model by the population unit to make it comparable to an incidence model.

Value

a dataframe with incidence rates per unit capita. A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period
* incidence.per_capita.fit (double) - an estimate of the incidence per capita rate on a log scale

* incidence.per_capita.se.fit (double) - the standard error of the incidence per capita rate esti-
mate on a log scale

* incidence.per_capita.0.025 (positive_double) - lower confidence limit of the incidence per
capita rate (true scale)

* incidence.per_capita.0.5 (positive_double) - median estimate of the incidence per capita rate
(true scale)

* incidence.per_capita.0.975 (positive_double) - upper confidence limit of the incidence per
capita rate (true scale)

 population_unit (double) - The population unit on which the per capita incidence rate is cal-
culated
No mandatory groupings.

No default value.

Examples

tmp = growthrates::england_covid %>%
growthrates: :poisson_locfit_model (window=21) %>%
growthrates: :normalise_incidence(growthrates: :england_demographics) %>%
dplyr::glimpse()

34 normalise_proportion

normalise_proportion Calculate a normalised risk ration from proportions

Description

This assumes case distribution proportions are stratified by a population grouping, e.g. geography
or age, and we have estimates of the size of that population during that time period. Normalising
by population proportion allows us to compare groups.

Usage

normalise_proportion(
modelled = i_proportion_model,
base = i_baseline_proportion_data,

Arguments

modelled Model output from processing the raw dataframe with something like proportion_locfit_model
A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
* proportion.fit (double) - an estimate of the proportion on a logit scale

* proportion.se.fit (double) - the standard error of proportion estimate on a
logit scale

* proportion.0.025 (proportion) - lower confidence limit of proportion (true
scale)

* proportion.0.5 (proportion) - median estimate of proportion (true scale)

* proportion.0.975 (proportion) - upper confidence limit of proportion (true
scale)

No mandatory groupings.

No default value.

base The baseline data must be grouped in the same way as modelled.

A dataframe containing the following columns:
* baseline_proportion (proportion) - Size of population

No mandatory groupings.

No default value.

not used

plot_growth_phase 35

Value

a dataframe with incidence rates per unit capita. A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period
* proportion.fit (double) - an estimate of the proportion on a logit scale
* proportion.se.fit (double) - the standard error of proportion estimate on a logit scale
* proportion.0.025 (proportion) - lower confidence limit of proportion (true scale)
e proportion.0.5 (proportion) - median estimate of proportion (true scale)
* proportion.0.975 (proportion) - upper confidence limit of proportion (true scale)

* risk_ratio.0.025 (positive_double) - lower confidence limit of the excess risk ratio for a popu-
lation group

* risk_ratio.0.5 (positive_double) - median estimate of the excess risk ratio for a population
group

* risk_ratio.0.975 (positive_double) - upper confidence limit of the excess risk ratio for a popu-
lation group

* baseline_proportion (proportion) - The population baseline risk from which the excess risk
ratio is based
No mandatory groupings.

No default value.

Examples

tmp = growthrates::england_covid %>%
growthrates: :proportion_locfit_model (window=21) %>%
growthrates: :normalise_proportion(growthrates::england_demographics) %>%
dplyr::glimpse()

plot_growth_phase(tmp)

plot_growth_phase Plot an incidence or proportion vs. growth phase diagram

Description

Plot an incidence or proportion vs. growth phase diagram

36 plot_growth_phase

Usage

plot_growth_phase(
modelled = i_timestamped,
timepoints = NULL,
duration = max(dplyr::count(modelled)$n),
interval = 7,
mapping = if (interfacer::is_col_present(modelled, class)) ggplot2::aes(colour = class)
else ggplot2::aes(),
cis = TRUE,

Arguments

modelled Either:
A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a time_period
* incidence.fit (double) - an estimate of the incidence rate on a log scale

¢ incidence.se.fit (double) - the standard error of the incidence rate estimate
on a log scale

* incidence.0.025 (positive_double) - lower confidence limit of the incidence
rate (true scale)

* incidence.0.5 (positive_double) - median estimate of the incidence rate (true
scale)

* incidence.0.975 (positive_double) - upper confidence limit of the incidence
rate (true scale)

 growth.fit (double) - an estimate of the growth rate
 growth.se.fit (double) - the standard error the growth rate

» growth.0.025 (double) - lower confidence limit of the growth rate
» growth.0.5 (double) - median estimate of the growth rate

e growth.0.975 (double) - upper confidence limit of the growth rate

No mandatory groupings.
No default value.
OR:
A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a time_period
* proportion.fit (double) - an estimate of the proportion on a logit scale

* proportion.se.fit (double) - the standard error of proportion estimate on a
logit scale

* proportion.0.025 (proportion) - lower confidence limit of proportion (true
scale)

* proportion.0.5 (proportion) - median estimate of proportion (true scale)

plot_growth_phase

timepoints

duration
interval
mapping

cis

Value

a ggplot timeseries

Examples

example code

37

e proportion.0.975 (proportion) - upper confidence limit of proportion (true
scale)

* relative.growth.fit (double) - an estimate of the relative growth rate
* relative.growth.se.fit (double) - the standard error the relative growth rate

* relative.growth.0.025 (double) - lower confidence limit of the relative growth
rate

* relative.growth.0.5 (double) - median estimate of the relative growth rate
* relative.growth.0.975 (double) - upper confidence limit of the relative growth
rate
No mandatory groupings.
No default value.
timepoints (as Date or time_period vector) of dates to plot phase diagrams. If

multiple this will result in a sequence of plots as facets. If NULL (the default) it
will be the last time point in the series

the length of the growth rate phase trail

the length of time between markers on the phase plot
aggplot2::aes() mapping

should the phases be marked with confidence intervals?
Arguments passed on to geom_events

events Significant events or time spans
A dataframe containing the following columns:
e label (character) - the event label
e start (date) - the start date, or the date of the event
* end (date) - the end date or NA if a single event

No mandatory groupings.
A default value is defined.

tmp = growthrates::england_covid %>%
time_aggregate(count=sum(count))

tmp_pop = growthrates::england_demographics %>%
dplyr: :ungroup() %>%
dplyr::summarise(population = sum(population))

If the incidence is normalised by population

tmp2 = tmp %>%

poisson_locfit_model() %>%
normalise_incidence(tmp_pop)

38 plot_growth_rate

timepoints = as.Date(c("Lockdown 1" = "2020-03-30", "Lockdown 2" = "2020-12-31"))

plot_growth_phase(tmp2, timepoints, duration=108)

plot_growth_rate Growth rate timeseries diagram

Description

Growth rate timeseries diagram

Usage

plot_growth_rate(
modelled = i_timeseries,
mapping = if (interfacer::is_col_present(modelled, class)) ggplot2::aes(colour = class)
else ggplot2::aes(),
events = i_events

Arguments

modelled Either:
A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a time_period
* incidence.fit (double) - an estimate of the incidence rate on a log scale

« incidence.se.fit (double) - the standard error of the incidence rate estimate
on a log scale

* incidence.0.025 (positive_double) - lower confidence limit of the incidence
rate (true scale)

* incidence.0.5 (positive_double) - median estimate of the incidence rate (true
scale)

* incidence.0.975 (positive_double) - upper confidence limit of the incidence
rate (true scale)

 growth.fit (double) - an estimate of the growth rate
 growth.se.fit (double) - the standard error the growth rate
» growth.0.025 (double) - lower confidence limit of the growth rate
* growth.0.5 (double) - median estimate of the growth rate
* growth.0.975 (double) - upper confidence limit of the growth rate
No mandatory groupings.
No default value.
OR:
A dataframe containing the following columns:

plot_growth_rate 39

* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a time_period

* proportion.fit (double) - an estimate of the proportion on a logit scale

* proportion.se.fit (double) - the standard error of proportion estimate on a
logit scale

* proportion.0.025 (proportion) - lower confidence limit of proportion (true
scale)

e proportion.0.5 (proportion) - median estimate of proportion (true scale)

* proportion.0.975 (proportion) - upper confidence limit of proportion (true
scale)

* relative.growth.fit (double) - an estimate of the relative growth rate
* relative.growth.se.fit (double) - the standard error the relative growth rate

* relative.growth.0.025 (double) - lower confidence limit of the relative growth
rate

* relative.growth.0.5 (double) - median estimate of the relative growth rate
* relative.growth.0.975 (double) - upper confidence limit of the relative growth
rate
No mandatory groupings.
No default value.

Arguments passed on to geom_events

mapping aggplot2::aes mapping. Most importantly setting the colour to something if
there are multiple incidence time series in the plot

events Significant events or time spans
A dataframe containing the following columns:
e label (character) - the event label
e start (date) - the start date, or the date of the event
* end (date) - the end date or NA if a single event
No mandatory groupings.
A default value is defined.

Value

a ggplot timeseries

Examples

example code
tmp = growthrates::england_covid %>%
time_aggregate(count=sum(count))

tmp_pop = growthrates::england_demographics %>%
dplyr: :ungroup() %>%
dplyr::summarise(population = sum(population))

40 plot_incidence

If the incidence is normalised by population
tmp2 = tmp %>%
poisson_locfit_model() %>%
normalise_incidence(tmp_pop)

Default pdf device doesn't support unicode
plot_growth_rate(tmp2,colour="blue")

tmp3 = growthrates::england_covid %>%
proportion_locfit_model()

Default pdf device doesn't support unicode
plot_growth_rate(tmp3)

plot_incidence Plot an incidence timeseries

Description

Plot an incidence timeseries

Usage

plot_incidence(
modelled = i_incidence_model,
raw = i_incidence_data,
mapping = if (interfacer::is_col_present(modelled, class)) ggplot2::aes(colour = class)
else ggplot2::aes(),
events = i_events

Arguments

modelled An optional estimate of the incidence time series. If modelled is missing then it
is estimated from raw using a poisson_locfit_model. In this case parameters
window and deg may be supplied to control the fit.

A dataframe containing the following columns:

* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a time_period

* incidence.fit (double) - an estimate of the incidence rate on a log scale

« incidence.se.fit (double) - the standard error of the incidence rate estimate
on a log scale

* incidence.0.025 (positive_double) - lower confidence limit of the incidence
rate (true scale)

plot_incidence

raw

mapping

events

Value

a ggplot object

41

* incidence.0.5 (positive_double) - median estimate of the incidence rate (true
scale)

* incidence.0.975 (positive_double) - upper confidence limit of the incidence
rate (true scale)
No mandatory groupings.
No default value.
modelled can also be the output from normalise_incidence in which case the
plot uses the per capita rates calculated by that function
The raw count data
A dataframe containing the following columns:
* count (positive_integer) - Positive case counts associated with the specified
timeframe
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
No mandatory groupings.

No default value.
Arguments passed on to geom_events, poisson_locfit_model

window a number of data points defining the bandwidth of the estimate, smaller
values result in less smoothing, large value in more. The default value of
14 is calibrated for data provided on a daily frequency, with weekly data a
lower value may be preferred. - (defaults to 14)

deg polynomial degree (min 1) - higher degree results in less smoothing, lower
values result in more smoothing. A degree of 1 is fitting a linear model
piece wise. - (defaults to 1)

frequency the density of the output estimates as a time period such as 7 days
or 2 weeks. - (defaults to "1 day")

aggplot2::aes mapping. Most importantly setting the colour to something if
there are multiple incidence timeseries in the plot
Significant events or time spans

A dataframe containing the following columns:

* label (character) - the event label
« start (date) - the start date, or the date of the event
* end (date) - the end date or NA if a single event

No mandatory groupings.
A default value is defined.

42 plot_multinomial

Examples

example code

tmp = growthrates::england_covid %>%
time_aggregate(count=sum(count))

tmp_pop = growthrates::england_demographics %>%
dplyr: :ungroup() %>%
dplyr: :summarise(population = sum(population))

If the incidence is normalised by population
tmp2 = tmp %>%
poisson_locfit_model() %>%
normalise_incidence(tmp_pop)

plot_incidence(tmp2,tmp %>% dplyr::cross_join(tmp_pop),colour="blue"”,size=0.25)

plot_multinomial Plot a multinomial proportions mode

Description

Plot a multinomial proportions mode

Usage

plot_multinomial(
modelled = i_multinomial_proportion_model,

mapping = ggplot2::aes(fill = class),
events = i_events,
normalise = FALSE

Arguments

modelled the multinomial count data
A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*

* class (factor) - A factor specifying the type of observation. This will be
things like variant, or serotype, for a multinomial model. Any missing data
points are ignored.

* proportion.0.5 (proportion) - median estimate of proportion (true scale)

Must be grouped by: class (exactly).
No default value.

plot_proportion

mapping

events

normalise

Value

a ggplot

Examples

43

Arguments passed on to geom_events

aggplot2::aes mapping. Most importantly setting the colour to something if
there are multiple incidence timeseries in the plot
Significant events or time spans
A dataframe containing the following columns:
e label (character) - the event label
e start (date) - the start date, or the date of the event
* end (date) - the end date or NA if a single event
No mandatory groupings.
A default value is defined.

make sure the probabilities add up to one - this can be a bad idea if you know
you may have missing values.

tmp = growthrates::england_covid %>%
growthrates: :proportion_locfit_model (window=21) %>%
dplyr::glimpse()

plot_multinomial(tmp, normalise=TRUE)+
ggplot2::scale_fill_viridis_d()

plot_proportion

Plot a proportions timeseries

Description

Plot a proportions timeseries

Usage

plot_proportion(
modelled = i_proportion_model,
raw = i_proportion_data,

L

mapping = if (interfacer::is_col_present(modelled, class)) ggplot2::aes(colour = class)
else ggplot2::aes(),

events

i_events

44

Arguments

modelled

raw

mapping

events

plot_proportion

Proportion model estimates
A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
* proportion.fit (double) - an estimate of the proportion on a logit scale

* proportion.se.fit (double) - the standard error of proportion estimate on a
logit scale

* proportion.0.025 (proportion) - lower confidence limit of proportion (true
scale)

* proportion.0.5 (proportion) - median estimate of proportion (true scale)
* proportion.0.975 (proportion) - upper confidence limit of proportion (true
scale)
No mandatory groupings.
No default value.
Raw count data
A dataframe containing the following columns:
* denom (positive_integer) - Total test counts associated with the specified
timeframe

* count (positive_integer) - Positive case counts associated with the specified
timeframe

* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
No mandatory groupings.
No default value.
Arguments passed on to geom_events, proportion_locfit_model
window anumber of data points defining the bandwidth of the estimate, smaller
values result in less smoothing, large value in more. The default value of

14 is calibrated for data provided on a daily frequency, with weekly data a
lower value may be preferred. - (defaults to 14)

deg polynomial degree (min 1) - higher degree results in less smoothing, lower
values result in more smoothing. A degree of 1 is fitting a linear model
piece wise. - (defaults to 1)
frequency the density of the output estimates as a time period such as 7 days
or 2 weeks. - (defaults to "1 day")
a ggplot2::aes mapping. Most importantly setting the colour to something if
there are multiple incidence timeseries in the plot
Significant events or time spans
A dataframe containing the following columns:
e label (character) - the event label
e start (date) - the start date, or the date of the event
* end (date) - the end date or NA if a single event
No mandatory groupings.
A default value is defined.

plot_rt

Value

a ggplot object

Examples

tmp = growthrates::england_covid %>%
growthrates: :proportion_locfit_model (window=21) %>%
dplyr::glimpse()

plot_proportion(tmp)+
ggplot2::scale_fill_viridis_d(aesthetics = c("fill","colour"))

45

plot_rt Reproduction number timeseries diagram

Description

Reproduction number timeseries diagram

Usage
plot_rt(
modelled = i_reproduction_number,
mapping = if (interfacer::is_col_present(modelled, class)) ggplot2

else ggplot2::aes(),
events = i_events

Arguments

modelled the modelled Rt estimate
A dataframe containing the following columns:

::aes(colour = class)

* time (as.time_period + group_unique) - A (usually complete) set of singular

observations per unit time as a ‘time_period*
* rt.fit (double) - an estimate of the reproduction number

¢ rt.se.fit (double) - the standard error of the reproduction number

* 1t.0.025 (double) - lower confidence limit of the reproduction number

* rt.0.5 (double) - median estimate of the reproduction number

* 1t.0.975 (double) - upper confidence limit of the reproduction number

No mandatory groupings.
No default value.

Arguments passed on to geom_events

46 poisson_glm_model

mapping aggplot2::aes mapping. Most importantly setting the colour to something if
there are multiple incidence time series in the plot
events Significant events or time spans

A dataframe containing the following columns:

* label (character) - the event label
« start (date) - the start date, or the date of the event
* end (date) - the end date or NA if a single event

No mandatory groupings.
A default value is defined.

Value

a ggplot timeseries

Examples

example code

tmp = growthrates::england_covid %>%
time_aggregate(count=sum(count))

if (FALSE) {

tmp2 = tmp %>%
poisson_locfit_model() %>%
rt_from_growth_rate()

comparing RT from growth rates with England consensus Rt:
plot_rt(tmp2,colour="blue")+
geom_errorbar(data=england_consensus_rt, mapping=aes(x=date-21,ymin=low, ymax=high),colour="red")

poisson_glm_model Poisson time-series model.

Description

This uses a generalised linear model to fit a quasi-poisson model with a time varying rate as a natural
cubic spline with approx one degree of freedom per window units of the time series.

Usage

poisson_glm_model(d = i_incidence_input, ..., window = 14, frequency = "1 day")

poisson_glm_model

Arguments

d

window

frequency

Value

47

Count model input
A dataframe containing the following columns:
* count (positive_integer) - Positive case counts associated with the specified
timeframe
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
Ungrouped.

No default value.
not used and present to allow proportion model to be used in a group_modify

a number of data points defining the bandwidth of the estimate, smaller values
result in less smoothing, large value in more. The default value of 14 is cali-
brated for data provided on a daily frequency, with weekly data a lower value
may be preferred. - (defaults to 14)

the density of the output estimates as a time period such as 7 days or 2 weeks.
- (defaults to "1 day")

A dataframe containing the following columns:

* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period

* incidence.fit (double) - an estimate of the incidence rate on a log scale

* incidence.se.fit (double) - the standard error of the incidence rate estimate on a log scale

* incidence.0.025 (positive_double) - lower confidence limit of the incidence rate (true scale)

* incidence.0.5

(positive_double) - median estimate of the incidence rate (true scale)

* incidence.0.975 (positive_double) - upper confidence limit of the incidence rate (true scale)

No mandatory groupings.

No default value.

Examples

tmp = growthrates::england_covid %>%
growthrates: :poisson_glm_model (window=21) %>%

dplyr::glimpse()

48

poisson_locfit_model

poisson_locfit_model Poisson time-series model.

Description

Takes a list of times and counts and fits a quasi-poisson model fitted with a log link function to
count data using local regression using the package locfit.

Usage

poisson_locfit_model(
d = i_incidence_input,

L

window

deg = 1,

frequency = "1 day”,
predict = TRUE

Arguments

d

window

deg

frequency

predict

input data
A dataframe containing the following columns:
* count (positive_integer) - Positive case counts associated with the specified
timeframe
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
Ungrouped.
No default value.

not used and present to allow proportion model to be used in a group_modify

a number of data points defining the bandwidth of the estimate, smaller values
result in less smoothing, large value in more. The default value of 14 is cali-
brated for data provided on a daily frequency, with weekly data a lower value
may be preferred. - (defaults to 14)

polynomial degree (min 1) - higher degree results in less smoothing, lower val-
ues result in more smoothing. A degree of 1 is fitting a linear model piece wise.
- (defaults to 1)

the density of the output estimates as a time period such as 7 days or 2 weeks.
- (defaults to "1 day")

result is a prediction dataframe. If false we return the locfit models (ad-
vanced). - (defaults to TRUE)

proportion_glm_model 49

Details

This results is an incidence rate estimate plus an absolute exponential growth rate estimate both
based on the time unit of the input data (e.g. for daily data the rate will be cases per day and the
growth rate will be daily).

Value

A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period
* incidence.fit (double) - an estimate of the incidence rate on a log scale
* incidence.se.fit (double) - the standard error of the incidence rate estimate on a log scale
* incidence.0.025 (positive_double) - lower confidence limit of the incidence rate (true scale)
* incidence.0.5 (positive_double) - median estimate of the incidence rate (true scale)
¢ incidence.0.975 (positive_double) - upper confidence limit of the incidence rate (true scale)
» growth.fit (double) - an estimate of the growth rate
» growth.se.fit (double) - the standard error the growth rate
» growth.0.025 (double) - lower confidence limit of the growth rate
e growth.0.5 (double) - median estimate of the growth rate

* growth.0.975 (double) - upper confidence limit of the growth rate

No mandatory groupings.

No default value.

Examples

growthrates: :england_covid %>%
growthrates: :poisson_locfit_model(window=21) %>%
dplyr::glimpse()

proportion_glm_model Binomial time-series model.

Description

This uses a generalised linear model to fit a quasi-binomial model with a time varying rate as a
natural cubic spline with approx one degree of freedom per window units of the time series.

50 proportion_glm_model

Usage

proportion_glm_model(
d = i_proportion_input,
window = 14,
frequency = "1 day”

)
Arguments
d Proportion model input
A dataframe containing the following columns:
* denom (positive_integer) - Total test counts associated with the specified
timeframe
* count (positive_integer) - Positive case counts associated with the specified
timeframe
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
Ungrouped.
No default value.
not used and present to allow proportion model to be used in a group_modify
window a number of data points defining the bandwidth of the estimate, smaller values
result in less smoothing, large value in more. The default value of 14 is cali-
brated for data provided on a daily frequency, with weekly data a lower value
may be preferred. - (defaults to 14)
frequency the density of the output estimates as a time period such as 7 days or 2 weeks.
- (defaults to "1 day")
Value

A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period
* proportion.fit (double) - an estimate of the proportion on a logit scale
* proportion.se.fit (double) - the standard error of proportion estimate on a logit scale
* proportion.0.025 (proportion) - lower confidence limit of proportion (true scale)
* proportion.0.5 (proportion) - median estimate of proportion (true scale)

* proportion.0.975 (proportion) - upper confidence limit of proportion (true scale)

No mandatory groupings.

No default value.

proportion_locfit_model 51

Examples

TODO: find out cause of the warnings
"observations with zero weight not used for calculating dispersion”
suppressWarnings(

growthrates: :england_covid %>%

growthrates: :proportion_glm_model (window=21) %>%

dplyr::glimpse()

proportion_locfit_model

A binomial proportion estimate and associated exponential growth
rate

Description

takes a list of times, counts and a denominator and fits a quasi-binomial model using a logit link
function to proportion data using local regression using the package locfit.

Usage

proportion_locfit_model(
d = i_proportion_input,
window = 14,
deg = 1,
frequency = "1 day”,
predict = TRUE

Arguments

d the input
A dataframe containing the following columns:
* denom (positive_integer) - Total test counts associated with the specified
timeframe

* count (positive_integer) - Positive case counts associated with the specified
timeframe

* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*

Ungrouped.
No default value.

not used and present to allow proportion model to be used in a group_modify

52

window

deg

frequency

predict

Details

proportion_locfit_model

a number of data points defining the bandwidth of the estimate, smaller values
result in less smoothing, large value in more. The default value of 14 is cali-
brated for data provided on a daily frequency, with weekly data a lower value
may be preferred. - (defaults to 14)

polynomial degree (min 1) - higher degree results in less smoothing, lower val-
ues result in more smoothing. A degree of 1 is fitting a linear model piece wise.
- (defaults to 1)

the density of the output estimates as a time period such as 7 days or 2 weeks.
- (defaults to "1 day")

result is a prediction dataframe. If false we return the locfit models (ad-
vanced). - (defaults to TRUE)

This expects d to contain one combination of:

* time and count and denom columns - e.g. all tests conducted.

This results is a one versus others comparison binomial proportion estimate plus a relative growth
rate estimate specifying how much quicker this is growing compared to the growth of the denomi-

nator.

The denominator maybe the sum of all subgroups denom = sum(count), e.g. in the situation where
there are multiple variants of a disease circulating. In which case the relative growth is that of the
subgroup compared to the overall. You can make this a one-versus-others comparison by making
the denominator exclude the current item (e.g. denom = sum(count)-count).

The denominator can also be used to express the size of the population tested. This gives us a
relative growth rate that is different in essence to the previous and may be a better estimate of the
true growth rate in the situation where testing effort is variable, or capacity saturated.

Value

A dataframe containing the following columns:

* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period

* proportion.fit (double) - an estimate of the proportion on a logit scale

* proportion.se.fit (double) - the standard error of proportion estimate on a logit scale

* proportion.0.025 (proportion) - lower confidence limit of proportion (true scale)

* proportion.0.5 (proportion) - median estimate of proportion (true scale)

* proportion.0.975 (proportion) - upper confidence limit of proportion (true scale)

* relative.growth.fit (double) - an estimate of the relative growth rate

* relative.growth.se.fit (double) - the standard error the relative growth rate

* relative.growth.0.025 (double) - lower confidence limit of the relative growth rate

* relative.growth.0.5 (double) - median estimate of the relative growth rate

* relative.growth.0.975 (double) - upper confidence limit of the relative growth rate

No mandatory groupings.

No default value.

reband_discrete

Examples

53

growthrates: :england_covid %>%
growthrates: :proportion_locfit_model (window=21) %>%

dplyr::glimpse()

reband_discrete

Reband any discrete distribution

Description

e.g. age banded population, or a discrete probability distribution e.g. a serial interval distribution.

Usage
reband_discrete(
X,
Y,
xout,
xlim = c(@, NA),
ytotal = c(@, sum(y)),
digits =
labelling = c("positive_integer”, "inclusive”, "exclusive"),
sep - n_n
)
Arguments
X a set of upper limits of bands, e.g. for age: 0-14;15-64;65-79;80+ is 15,65,80,NA
y a set of quantities for each band e.g. population figures
xout a set of new upper limits
x1lim Upper and lower limits for x. if the last band is e.g 80+ in the input and we
want to know the 85+ band in the output some kind of maximum upper limit is
needed to interpolate to.
ytotal upper and lower limits for y. If the interpolation values fall outside of x then the
in and max limits of y are given by this.
digits if the xout value is continuous then how many significant figures to put in the
labels
labelling are the xout values interpretable as an inclusive upper limit, or an exclusive
upper limit, or as an upper limit of an ‘positive_integer quantity
sep seperator for names e.g. 18-24 or 18 to 24
Value

a rebanded set of discrete values, guaranteed to sum to the same as y

54 rt_epiestim

Examples

ul = stringr::str_extract(england_demographics$class, "_([@-91+)",group = 1) %>%
as.numeric()

tmp = reband_discrete(
ul, england_demographics$population,
c(5,10,15,40,80), xlim=c(0,120))

tmp

sum(tmp)
sum(england_demographics$population)

rt_epiestim EpiEstim reproduction number

Description

Calculate a reproduction number estimate from incidence data using the EpiEstim library and an
empirical generation time distribution. This uses resampling to transmit uncertainty in generation
time estimates. This is quite slow for each time series depending on the number of bootstraps and

samples in the infectivity profile.

Usage

rt_epiestim(
df = i_incidence_input,
ip = i_infectivity_profile,
bootstraps = 2000,
window = 14,
mean_prior = 1,
std_prior = 2,

Arguments

df Count data. Extra groups are allowed.
A dataframe containing the following columns:

* count (positive_integer) - Positive case counts associated with the specified

timeframe

* time (as.time_period + group_unique) - A (usually complete) set of singular

observations per unit time as a ‘time_period*

Ungrouped.
No default value.

rt_epiestim

ip

bootstraps
window
mean_prior

std_prior

Details

55

infectivity profile
A dataframe containing the following columns:

* boot (anything) - a bootstrap identifier

* time (positive_double) - the end of the time period (in days)

* probability (proportion) - the probability of infection between previous time

period until ‘time*

Must be grouped by: boot (exactly).
A default value is defined.

* the number of bootstraps to take to calculate for each point.

* the width of the epiestim window
the prior for the R_t estimate. When sample size is low the R_t estimate
will revert to this prior. In EpiEstim the default is a high number to allow de-
tection of insufficient data but this tends to create anomalies in the early part of
infection timeseries. A possible value is R_0 but in fact this also will be a
poor choice for the value of R_t when case numbers drop to a low value.
the prior for the R_t SD.
not used

This will calculate a reproduction number for each group in the input dataframe.

Value

A dataframe containing the following columns:

* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period

* rt.fit (double) - an estimate of the reproduction number

* rt.se.fit (double) - the standard error of the reproduction number

* 1t.0.025 (double) - lower confidence limit of the reproduction number

¢ rt.0.5 (double) - median estimate of the reproduction number

* 1t.0.975 (double) - upper confidence limit of the reproduction number

No mandatory groupings.

No default value.

Examples

tmp = growthrates::england_covid %>%
time_aggregate(count=sum(count))

if (FALSE) {

not run due to long running
tmp2 = tmp %>% rt_epiestim()

}

56 rt_from_growth_rate

rt_from_growth_rate Wallinga-Lipsitch reproduction number

Description

Calculate a reproduction number estimate from growth rate using the Wallinga 2007 estimation
using empirical generation time distribution. This uses resampling to transmit uncertainty in growth
rate estimates

Usage

rt_from_growth_rate(
df = i_growth_rate,
ip = i_infectivity_profile,
bootstraps = 2000

)

Arguments

df Growth rate estimates
A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*
 growth.fit (double) - an estimate of the growth rate
 growth.se.fit (double) - the standard error the growth rate
» growth.0.025 (double) - lower confidence limit of the growth rate
* growth.0.5 (double) - median estimate of the growth rate
 growth.0.975 (double) - upper confidence limit of the growth rate

No mandatory groupings.
No default value.
ip Infectivity profile
A dataframe containing the following columns:
* boot (anything) - a bootstrap identifier

* time (positive_double) - the end of the time period (in days)

* probability (proportion) - the probability of infection between previous time
period until ‘time*

Must be grouped by: boot (exactly).
A default value is defined.

bootstraps * the number of bootstraps to take to calculate for each point.

rt_from_incidence 57

Value

A dataframe containing the following columns:
* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period
* rt.fit (double) - an estimate of the reproduction number
* rt.se.fit (double) - the standard error of the reproduction number
* 1t.0.025 (double) - lower confidence limit of the reproduction number
¢ rt.0.5 (double) - median estimate of the reproduction number

* 1t.0.975 (double) - upper confidence limit of the reproduction number

No mandatory groupings.

No default value.

Examples

tmp = growthrates::england_covid %>%
time_aggregate(count=sum(count))

if (FALSE) {
not run
tmp2 = tmp %>%
poisson_locfit_model() %>%
rt_from_growth_rate()

rt_from_incidence Reproduction number from modelled incidence

Description

Calculate a reproduction number estimate from growth rate using the methods described in the
vignette "Estimating the reproduction number from modelled incidence" and using an empirical
generation time distribution.

Usage

rt_from_incidence(df = i_incidence_model, ip = i_infectivity_profile)

58

Arguments

df

ip

Value

rt_from_incidence

Count data

A dataframe containing the following columns:

* time (as.time_period + group_unique) - A (usually complete) set of singular
observations per unit time as a ‘time_period*

* incidence.fit (double) - an estimate of the incidence rate on a log scale

« incidence.se.fit (double) - the standard error of the incidence rate estimate
on a log scale

* incidence.0.025 (positive_double) - lower confidence limit of the incidence
rate (true scale)

* incidence.0.5 (positive_double) - median estimate of the incidence rate (true
scale)

* incidence.0.975 (positive_double) - upper confidence limit of the incidence
rate (true scale)

No mandatory groupings.

No default value.

Infectivity profile

A dataframe containing the following columns:

* boot (anything) - a bootstrap identifier
* time (positive_double) - the end of the time period (in days)

* probability (proportion) - the probability of infection between previous time
period until ‘time*

Must be grouped by: boot (exactly).
A default value is defined.

A dataframe containing the following columns:

* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period

* rt.fit (double) - an estimate of the reproduction number

* rt.se.fit (double) - the standard error of the reproduction number

¢ 1t.0.025 (double) - lower confidence limit of the reproduction number

¢ rt.0.5 (double) - median estimate of the reproduction number

* 1t.0.975 (double) - upper confidence limit of the reproduction number

No mandatory groupings.

No default value.

scale_y_loglp

Examples

df = growthrates::england_covid %>%
time_aggregate(count=sum(count)) %>%
poisson_locfit_model()

if (FALSE) {

59

not run
tmp2 = df %>% rt_from_incidence()
3
scale_y_loglp Aloglp y scale
Description

Aloglp y scale

Usage

scale_y_loglp(..., n =5, base = 10, dp = @)
Arguments

Other arguments passed on to scale_(x|y)_continuous()

n the number of major breaks

base the base for the logarithm

dp decimal points
Value

a ggplot scale

scale_y_logit A logit y scale

Description

A logit y scale

Usage

scale_y_logit(...)

60 time_aggregate

Arguments

Other arguments passed on to scale_(x|y)_continuous()

Value

a ggplot scale

time_aggregate Aggregate time series data preserving the time series

Description

Aggregate time series data preserving the time series

Usage

time_aggregate(
df = i_timestamped,

L

.groups = NULL,

.cols = NULL,
.fns = NULL
)
Arguments
df an optionally grouped time series. Grouping should not include the time column.
The grouping works differently from dplyr: : summarise in that the last level of
non-time groups is lost in this operation, so the subgroup you wish to aggregate
should be included in the grouping.
A set of dplyr: :summarise statements, or additional parameters for . fns
.groups as per dplyr: :summarise
.cols Optional tidyselect column specification for dplyr::across. if .fns is given
and the .cols parameter is not specified then the columns to summarise are
automatically identified. In doing this any Date columns are dropped. If this in
not what you want then .cols or ... must be given
.fns Optional a set of function specifications as per dplyr: :across
Value

the summarised time series preserving the time column, and with the grouping structure involving
one fewer levels that the input

time_summarise

Examples

61

growthrates: :england_covid %>%
time_aggregate(count = sum(count), denom = sum(denom)) %>%
dplyr::glimpse()

growthrates: :england_covid %>%
time_aggregate(.fns=mean) %>%
dplyr::glimpse()

time_summarise

Summarise data from a line list to a time-series of counts.

Description

This principally is designed to take a record of single events and produce a summary time-series
count of events by group, class and date. The default behaviour is to guess the cadence of the input
data and summarise the event line list to a (set of) regular time-series counts for use in incidence
and growth rate estimates.

Usage

time_summarise(
df = i_dated,

unit,

anchor = "start",
rectangular = FALSE,

.fill = list(count = @)

Arguments

df

unit

anchor

rectangular

a line list of data you want to summarise, optionally grouped. If this is grouped
then each group is treated independently. The remaining columns must contain
a date column and may contain a class column. If a count column is present
the counts will be summed, otherwise each individual row will be counted as a
single event (as a linelist)

aperiod e.g. "1 week"

one of a date, "start" or "end" or a weekday name e.g. "mon" this will always be
one of the start of the time periods we are cutting into

should the resulting time series be the same length for all groups. This is only the
case if you can be sure that your data is complete for all subgroups, otherwise
missing data will be treated as zero counts. This is important if leading and
trailing missing data in one subgroup can be due to a reporting delay in that
subgroup, in which case a rectangular time series will erroneously fill in zero
counts for this missing data.

62 time_summarise

a spec for a dplyr::summary(...) - optional, and if not provided a count =
dplyr::n() or a count = sum(count) is performed.

.fill a list similar to tidyr::complete for values to fill variables with

Details

If the data is given with a class column the time series are interpreted as having a denominator,
consisting of all the different classes within a time period. This may be subtypes (e.g. variants,
serotypes) or markers for test positivity. In either case the resulting time series will have counts for
all classes and denominators for the combination.

There is flexibility for other kinds of summarisation if the raw data is not count based (e.g. means
of continuous variables) but in this case a the slider package is usually going to be better, as time
summarise will only look at non overlapping time periods with fixed lengths.

There is another use case where an existing timeseries on a particular frequency is aggregated to
another less frequent basis (e.g. moving from a daily timeseries to a weekly one). In this case the
input will contain a count column. In this mode no checks are made that the more frequent events
are all present before summarisation so the result may include different numbers of input periods
(e.g. going from weeks to months may be 4 or 5 weeks in each month)

Value

The output depends on whether or not the input was grouped and had a class column. The most
detailed output will be:

A dataframe containing the following columns:

* denom (positive_integer) - Total test counts associated with the specified timeframe
* count (positive_integer) - Positive case counts associated with the specified timeframe
* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period
No mandatory groupings.
No default value.
or a more minimal output if the input is only a plain list of dated events:

A dataframe containing the following columns:

* count (positive_integer) - Positive case counts associated with the specified timeframe
* time (as.time_period + group_unique) - A (usually complete) set of singular observations per
unit time as a time_period
No mandatory groupings.

No default value.

time_to_date 63

time_to_date Convert a set of timepoints to dates

Description

Convert a set of timepoints to dates

Usage

time_to_date(
timepoints,
unit = attr(timepoints, "unit"),
start_date = attr(timepoints, "start_date")

)
Arguments
timepoints a set of numeric time points
unit the period / unit of the time points, which will be extracted from timepoints if
possible
start_date the zero day of the time series, will be extracted from timepoints if possible
Value

a vector of dates

Examples

times = date_to_time(as.Date("”2019-12-29")+0:100, "1 week")
dates = time_to_date(times)

wallinga_lipsitch Calculate the reproduction number from a growth rate estimate and
an infectivity profile

Description

Calculate the reproduction number from a growth rate estimate and an infectivity profile

Usage

wallinga_lipsitch(r, y, a = 1:1length(y))

64 wallinga_lipsitch

Arguments
r a growth rate (may be a vector)
y an empirical infectivity profile as a probability vector, starting at P(0<t,a[1])
the end time of the estimate (defaults to single days).
Value

a reproduction number estimate based on r

Examples

wallinga_lipsitch(r=seq(-0.1,0.1,length.out=9), y=dgamma(1:50, 5,2))

Index

+ datasets
covid_infectivity_profile, 6
england_consensus_growth_rate, 13
england_consensus_rt, 14
england_covid, 15
england_covid_pcr_positivity, 15
england_covid_proportion, 16
england_demographics, 17
england_events, 17
england_nhs_app, 18
england_ons_infection_survey, 19
england_variants, 20
germany_covid, 23
germany_demographics, 24

x interfaces
covid_infectivity_profile, 6

+ models
doubling_time, 12
multinomial_nnet_model, 28
normalise_incidence, 29
normalise_incidence.incidence, 30
normalise_incidence.proportion, 32
normalise_proportion, 34
poisson_glm_model, 46
poisson_locfit_model, 48
proportion_glm_model, 49
proportion_locfit_model, 51
rt_epiestim, 54
rt_from_growth_rate, 56
rt_from_incidence, 57

* time_period
as.Date.time_period, 3
as.time_period, 4
cut_date, 7
date_seq, 8
date_seq.Date, 9
date_seq.time_period, 10
date_to_time, 11
fdmy, 20

65

is.Date, 25
labels.time_period, 25
max_date, 27
min_date, 27
time_aggregate, 60
time_summarise, 61
time_to_date, 63
* Vis
geom_events, 21
plot_growth_phase, 35
plot_growth_rate, 38
plot_incidence, 40
plot_multinomial, 42
plot_proportion, 43
plot_rt, 45
[.time_period (as.time_period), 4
[<-.time_period (as.time_period), 4
[[.time_period (as.time_period), 4
[[<-.time_period (as.time_period), 4

as.Date.time_period, 3

as.POSIXct.time_period
(as.Date.time_period), 3

as.time_period, 4

breaks_loglp, 5

c.time_period (as.time_period), 4
coord_cartesian(), 23
covid_infectivity_profile, 6
cut_date, 7

date_seq, 8
date_seq.Date, 9
date_seq.numeric, 10
date_seq.time_period, 10
date_to_time, 11
doubling_time, 12

england_consensus_growth_rate, 13
england_consensus_rt, 14

66

england_covid, 15
england_covid_pcr_positivity, 15
england_covid_proportion, 16
england_demographics, 17
england_events, 17
england_nhs_app, 18
england_ons_infection_survey, 19
england_variants, 20
expansion(), 23

fdmy, 20

geom_events, 21, 37, 39, 41, 4345
germany_covid, 23
germany_demographics, 24
ggplot2::scale_x_date, 22
guides(), 23

is.Date, 25
is.time_period (as.time_period), 4

labels. time_period, 25
lambda, 22, 23
logit_trans, 26

max_date, 27
min_date, 27
multinomial_nnet_model, 28

normalise_incidence, 29
normalise_incidence.incidence, 30

normalise_incidence.proportion, 32

normalise_proportion, 34

plot_growth_phase, 35
plot_growth_rate, 38
plot_incidence, 40
plot_multinomial, 42
plot_proportion, 43
plot_rt, 45
poisson_glm_model, 46
poisson_locfit_model, 417, 48

print.time_period (as.time_period), 4

proportion_glm_model, 49
proportion_locfit_model, 44, 51

reband_discrete, 53
rt_epiestim, 54
rt_from_growth_rate, 56
rt_from_incidence, 57

scale_y_loglp, 59
scale_y_logit, 59

scales: :censor(), 23

scales: :squish(), 23
scales::squish_infinite(), 23
strftime(), 22

time_aggregate, 60
time_summarise, 61

time_to_date, 63

wallinga_lipsitch, 63

INDEX

	as.Date.time_period
	as.time_period
	breaks_log1p
	covid_infectivity_profile
	cut_date
	date_seq
	date_seq.Date
	date_seq.numeric
	date_seq.time_period
	date_to_time
	doubling_time
	england_consensus_growth_rate
	england_consensus_rt
	england_covid
	england_covid_pcr_positivity
	england_covid_proportion
	england_demographics
	england_events
	england_nhs_app
	england_ons_infection_survey
	england_variants
	fdmy
	geom_events
	germany_covid
	germany_demographics
	is.Date
	labels.time_period
	logit_trans
	max_date
	min_date
	multinomial_nnet_model
	normalise_incidence
	normalise_incidence.incidence
	normalise_incidence.proportion
	normalise_proportion
	plot_growth_phase
	plot_growth_rate
	plot_incidence
	plot_multinomial
	plot_proportion
	plot_rt
	poisson_glm_model
	poisson_locfit_model
	proportion_glm_model
	proportion_locfit_model
	reband_discrete
	rt_epiestim
	rt_from_growth_rate
	rt_from_incidence
	scale_y_log1p
	scale_y_logit
	time_aggregate
	time_summarise
	time_to_date
	wallinga_lipsitch
	Index

