
Package: tableone (via r-universe)
November 11, 2024

Title Descriptive Tables for Observational or Interventional Studies

Version 0.4.3

Description Generating tabular summaries of data in a format suitable
for reporting in journal articles is fiddly and slows down more
detailed analysis. Comparing two populations with respect to an
intervention, and reporting it is a task that can be largely
automated.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Suggests covr, formatR, here, knitr, rmarkdown, survival, scales,
ggplot2, tidyverse, htmltools, testthat

Config/testthat/edition 3

VignetteBuilder knitr

Depends R (>= 2.10)

LazyData true

Imports dplyr, huxtable (>= 5.5.1), magrittr, nortest, rlang, stringr,
systemfonts, tibble, tidyr, utils, stats, forcats, binom,
broom, glue, purrr, tidyselect (>= 1.2.0), pwr

URL https://bristol-vaccine-centre.github.io/tableone/,

https://github.com/bristol-vaccine-centre/tableone,

https://doi.org/10.5281/zenodo.7226522

BugReports https://github.com/bristol-vaccine-centre/tableone/issues

Config/pak/sysreqs libfontconfig1-dev libfreetype6-dev texlive
libicu-dev libxml2-dev

Repository https://bristol-vaccine-centre.r-universe.dev

RemoteUrl https://github.com/bristol-vaccine-centre/tableone

RemoteRef 0.4.3

RemoteSha 6e45c8b0b7270f7793075d176885e735e9446d72

1

https://bristol-vaccine-centre.github.io/tableone/
https://github.com/bristol-vaccine-centre/tableone
https://doi.org/10.5281/zenodo.7226522
https://github.com/bristol-vaccine-centre/tableone/issues

2 as_huxtable.t1_shape

Contents

as_huxtable.t1_shape . 2
as_huxtable.t1_signif . 3
as_huxtable.t1_summary . 5
as_t1_shape . 6
as_t1_signif . 7
as_t1_summary . 8
bad_test_cols . 9
compare_missing . 10
compare_outcomes . 11
compare_population . 14
count_table . 16
cut_integer . 17
default.format . 18
describe_data . 19
describe_population . 20
diamonds . 23
explicit_na . 23
extract_comparison . 24
extract_units . 26
format_pvalue . 26
get_footer_text . 27
group_comparison . 27
label_extractor . 29
make_factors . 30
missing_diamonds . 32
mnar_two_class_1000 . 32
multi_class_negative . 33
one_class_test_100 . 33
one_class_test_1000 . 34
remove_missing . 34
set_labels . 35
set_units . 36
test_cols . 37
two_class_test . 37

Index 38

as_huxtable.t1_shape Convert a t1_summary object to a huxtable

Description

Convert a t1_summary object to a huxtable

as_huxtable.t1_signif 3

Usage

S3 method for class 't1_shape'
as_huxtable(
x,
...,
font_size = getOption("tableone.font_size", 8),
font = getOption("tableone.font", "Arial"),
footer_text = NULL,
show_binary_value = NULL

)

Arguments

x the t1_summary object as produced by describe_population

... not used

font_size (optional) the font size for the table in points

font (optional) the font family for the table (which will be matched to closest on your
system)

footer_text any text that needs to be added at the end of the table, setting this to FALSE
dsables the whole footer (as does options("tableone.hide_footer"=TRUE)).

show_binary_value

if set this will filter the display of covariates where the number of possibilities is
exactly 2 to this value.

Value

a formatted table as a huxtable

as_huxtable.t1_signif Convert a t1_signif S3 class to a huxtable

Description

This is responsible for printing the significance test results and comparison

Usage

S3 method for class 't1_signif'
as_huxtable(
x,
...,
layout = "compact",
override_percent_dp = list(),
override_real_dp = list(),
p_format = names(.pvalue.defaults),

4 as_huxtable.t1_signif

font_size = getOption("tableone.font_size", 8),
font = getOption("tableone.font", "Arial"),
footer_text = NULL,
show_binary_value = NULL

)

Arguments

x the t1_signif result as calculated by compare_population(...)

... not used

layout (optional) various layouts are defined as default. As of this version of tableone
they are "relaxed","compact","micro","simple","single","missing". The layouts
can be customised using the options options("tableone.format_list"=list(...)"),
and this is described in more detail in the vignettes.

override_percent_dp

(optional) a named list of overrides for the default precision of formatting per-
centages, following a c(<colname_1> = 2, <colname_2> = 4, ...) format.
columns not present in this list will use the defaults defined in the layout. See
the vignette on customisation.

override_real_dp

(optional) a named list of overrides for the default precision of formatting real
values, following a c(<colname_1> = 2, <colname_2> = 4, ...) format.
columns not present in this list will use the defaults defined in the layout. See
the utils::vignette("customisation", package="tableone").

p_format the format of the p-values: one of "sampl", "nejm", "jama", "lancet", "aim" but
any value here is overridden by the option("tableone.pvalue_formatter"=function(...))

font_size (optional) the font size for the table in points

font (optional) the font family for the table (which will be matched to closest on your
system)

footer_text any text that needs to be added at the end of the table, setting this to FALSE
dsables the whole footer (as does options("tableone.hide_footer"=TRUE)).

show_binary_value

if set this will filter the display of covariates where the number of possibilities is
exactly 2 to this value.

Value

a formatted table as a huxtable

Examples

library(tableone)
tmp = iris %>% dplyr::group_by(Species) %>%

as_t1_signif(tidyselect::everything()) %>%
huxtable::as_huxtable()

as_huxtable.t1_summary 5

as_huxtable.t1_summary

Convert a t1_summary object to a huxtable

Description

Convert a t1_summary object to a huxtable

Usage

S3 method for class 't1_summary'
as_huxtable(
x,
...,
layout = "single",
override_percent_dp = list(),
override_real_dp = list(),
font_size = getOption("tableone.font_size", 8),
font = getOption("tableone.font", "Arial"),
footer_text = NULL,
show_binary_value = NULL

)

Arguments

x the t1_summary object as produced by describe_population

... not used

layout (optional) various layouts are defined as default. As of this version of tableone
they are "relaxed","compact","micro","simple","single","missing". The layouts
can be customised using the options options("tableone.format_list"=list(...)"),
and this is described in more detail in the vignettes.

override_percent_dp

(optional) a named list of overrides for the default precision of formatting per-
centages, following a c(<colname_1> = 2, <colname_2> = 4, ...) format.
columns not present in this list will use the defaults defined in the layout. See
the vignette on customisation.

override_real_dp

(optional) a named list of overrides for the default precision of formatting real
values, following a c(<colname_1> = 2, <colname_2> = 4, ...) format.
columns not present in this list will use the defaults defined in the layout. See
the utils::vignette("customisation", package="tableone").

font_size (optional) the font size for the table in points

font (optional) the font family for the table (which will be matched to closest on your
system)

6 as_t1_shape

footer_text any text that needs to be added at the end of the table, setting this to FALSE
dsables the whole footer (as does options("tableone.hide_footer"=TRUE)).

show_binary_value

if set this will filter the display of covariates where the number of possibilities is
exactly 2 to this value.

Value

a formatted table as a huxtable

as_t1_shape Summarise a data set

Description

The data set description is a simple summary of the data formats, types and missingness

Usage

as_t1_shape(df, ..., label_fn = label_extractor(df), units = extract_units(df))

Arguments

df a dataframe of individual observations. Grouping, if present, is ignored. (n.b. if
you wanted to construct multiple summary tables a dplyr::group_map() call
could be used)

... the columns of variables we wish to summarise. This can be given as a tidyselect
specification (see utils::vignette("syntax", package = "tidyselect")),
identifying the columns. Alternatively it can be given as a formula of the nature
outcome ~ intervention + covariate_1 + covariate_2 +
which may be more convenient if you are going on to do a model fit. If the latter
format the left hand side is ignored (outcomes are not usual in this kind of table).

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the
dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

units (optional) a named list of units, following a c(<colname_1> = "<unit_1>", <colname_2> = "<unit_2>", ...)
format. columns not present in this list are assumed to have no units. Units may
be involved in the formatting of the summary output.

Value

a t1_shape data frame.

as_t1_signif 7

Examples

tmp = iris %>% as_t1_shape(
tidyselect::everything()

)

as_t1_signif Compares the population against an intervention

Description

The population comparison is a summary of the co-variates in a data set with no reference to out-
come, but comparing intervention groups. It will report summary statistics for continuous and
counts for categorical data, for each of the intervention groups, and reports on the significance of
the association in relation to the intervention groups. It gives a clear summary of whether data is
correlated to intervention.

Usage

as_t1_signif(
df,
...,
label_fn = label_extractor(df),
units = extract_units(df),
override_type = list(),
override_method = list()

)

Arguments

df a dataframe of individual observations. If using the tidyselect syntax data
grouping defines the intervention group and should be present. if the formula
interface is used the first variable in the right hand side of the formula is used as
the intervention, in which case grouping is ignored.

... the columns of variables we wish to summarise. This can be given as a tidyselect
specification (see utils::vignette("syntax", package = "tidyselect")),
identifying the columns. Alternatively it can be given as a formula of the nature
outcome ~ intervention + covariate_1 + covariate_2 +
which may be more convenient if you are going on to do a model fit later. If the
latter format the left hand side is ignored (outcomes are not usual in this kind of
table).

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the
dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

8 as_t1_summary

units (optional) a named list of units, following a c(<colname_1> = "<unit_1>", <colname_2> = "<unit_2>", ...)
format. columns not present in this list are assumed to have no units. Units may
be involved in the formatting of the summary output.

override_type (optional) a named list of data summary types. The default type for a column in a
data set are calculated using heurisitics depending on the nature of the data (cat-
egorical or continuous), and result of normality tests. if you want to override this
the options are "subtype_count","median_iqr","mean_sd","skipped" and you spec-
ify this on a column by column bases with a named list (e.g c("Petal.Width"="mean_sd")).
Overriding the default does not check the type of data is correct for the summary
type and will potentially cause errors if this is not done correctly.

override_method

if you want to override the comparison method for a particular variable the op-
tions are "chi-sq trend","fisher","t-test","2-sided wilcoxon","2-sided ks","anova","kruskal-
wallis","no comparison" and you specify this on a column by column bases with
a named list (e.g c("Petal.Width"="t-test"))

Value

a t1_signif dataframe.

Examples

tmp = iris %>% dplyr::group_by(Species) %>% as_t1_signif(tidyselect::everything())
tmp = diamonds %>% dplyr::group_by(is_colored) %>% as_t1_signif(tidyselect::everything())

as_t1_summary Summarise a population

Description

The population description is a simple summary of the co-variates in a data set with no reference
to outcome, and not comparing intervention (although it might contain intervention rates.) It will
report summary statistics for continuous and counts for categorical data,

Usage

as_t1_summary(
df,
...,
label_fn = label_extractor(df),
units = extract_units(df),
override_type = list()

)

bad_test_cols 9

Arguments

df a dataframe of individual observations. Grouping, if present, is ignored. (n.b. if
you wanted to construct multiple summary tables a dplyr::group_map() call
could be used)

... the columns of variables we wish to summarise. This can be given as a tidyselect
specification (see utils::vignette("syntax", package = "tidyselect")),
identifying the columns. Alternatively it can be given as a formula of the nature
outcome ~ intervention + covariate_1 + covariate_2 +
which may be more convenient if you are going on to do a model fit. If the latter
format the left hand side is ignored (outcomes are not usual in this kind of table).

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the
dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

units (optional) a named list of units, following a c(<colname_1> = "<unit_1>", <colname_2> = "<unit_2>", ...)
format. columns not present in this list are assumed to have no units. Units may
be involved in the formatting of the summary output.

override_type (optional) a named list of data summary types. The default type for a column in a
data set are calculated using heurisitics depending on the nature of the data (cat-
egorical or continuous), and result of normality tests. if you want to override this
the options are "subtype_count","median_iqr","mean_sd","skipped" and you spec-
ify this on a column by column bases with a named list (e.g c("Petal.Width"="mean_sd")).
Overriding the default does not check the type of data is correct for the summary
type and will potentially cause errors if this is not done correctly.

Value

a t1_summary data frame.

Examples

tmp = iris %>% as_t1_summary(
tidyselect::everything(),
override_type = c(Petal.Length = "mean_sd", Petal.Width = "mean_sd")

)

bad_test_cols A list of columns for a test case

Description

A list of columns for a test case

10 compare_missing

Usage

bad_test_cols

Format

bad_test_cols:
Test data

compare_missing Compares missing data against an intervention in a summary table

Description

The missing data summary is a simple summary of the missingness of co-variates in a data set with
no reference to outcome, but comparing intervention groups. It reports summary counts for missing-
ness in data and reports on the significance of that missingness in relation to the intervention groups,
allowing a clear summary of whether data is missing at random compared to the intervention.

Usage

compare_missing(
df,
...,
label_fn = label_extractor(df),
p_format = names(.pvalue.defaults),
font_size = getOption("tableone.font_size", 8),
font = getOption("tableone.font", "Arial"),
significance_limit = 0.05,
missingness_limit = 0.1,
footer_text = NULL,
raw_output = FALSE

)

Arguments

df a dataframe of individual observations. If using the tidyselect syntax data
grouping defines the intervention group and should be present. if the formula
interface is used the first variable in the right hand side of the formula is used as
the intervention, in which case grouping is ignored.

... the columns of variables we wish to summarise. This can be given as a tidyselect
specification (see utils::vignette("syntax", package = "tidyselect")),
identifying the columns. Alternatively it can be given as a formula of the nature
outcome ~ intervention + covariate_1 + covariate_2 +
which may be more convenient if you are going on to do a model fit later. If the
latter format the left hand side is ignored (outcomes are not usual in this kind of
table).

compare_outcomes 11

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the
dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

p_format the format of the p-values: one of "sampl", "nejm", "jama", "lancet", "aim" but
any value here is overridden by the option("tableone.pvalue_formatter"=function(...))

font_size (optional) the font size for the table in points

font (optional) the font family for the table (which will be matched to closest on your
system)

significance_limit

the limit at which we reject the hypothesis that the data is missing at random.
missingness_limit

the limit at which too much data is missing to include the predictor.

footer_text any text that needs to be added at the end of the table, setting this to FALSE
dsables the whole footer (as does options("tableone.hide_footer"=TRUE)).

raw_output return comparison as tidy dataframe rather than formatted table

Value

a huxtable formatted table.

Examples

this option lets us change the column name for p value from its default
"P value"
old = options("tableone.pvalue_column_name"="p-value")

missing at random
missing_diamonds %>% dplyr::group_by(is_colored) %>% compare_missing(tidyselect::everything())

nothing missing
iris %>% dplyr::group_by(Species) %>% compare_missing(tidyselect::everything())

MNAR: by design missingness is correlated with grouping
mnar_two_class_1000 %>% dplyr::group_by(grouping) %>% compare_missing(tidyselect::everything())

options(old)

compare_outcomes Compares multiple outcomes against an intervention in a summary
table

12 compare_outcomes

Description

The outcome table is a simple summary of a binary or categorical outcome in a data set compared by
intervention groups. The comparison is independent of any covariates, and is a preliminary output
prior to more formal statistical analysis or model fitting.

Usage

compare_outcomes(
df,
...,
label_fn = label_extractor(df),
units = extract_units(df),
override_type = list(),
layout = "compact",
override_percent_dp = list(),
override_real_dp = list(),
p_format = names(.pvalue.defaults),
font_size = getOption("tableone.font_size", 8),
font = getOption("tableone.font", "Arial"),
footer_text = NULL,
show_binary_value = NULL,
raw_output = FALSE

)

Arguments

df a dataframe of individual observations. If using the tidyselect syntax data
grouping defines the intervention group and should be present. if the formula
interface is used the first variable in the right hand side of the formula is used as
the intervention, in which case grouping is ignored.

... the outcomes are specified either as a tidyselect specification, in which case
the grouping of the df input determines the intervention and the output is the
same as a compare_population() call with a tidyselect. Alternatively a set of
formulae can be provided that specify the outcomes on the left hand side, e.g.
outcome1 ~ intervention + cov1, outcome2 ~ intervention + cov1, ...
in this case the intervention must be the same for all formulae and used to de-
termine the comparison groups.

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the
dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

units (optional) a named list of units, following a c(<colname_1> = "<unit_1>", <colname_2> = "<unit_2>", ...)
format. columns not present in this list are assumed to have no units. Units may
be involved in the formatting of the summary output.

compare_outcomes 13

override_type (optional) a named list of data summary types. The default type for a column in a
data set are calculated using heurisitics depending on the nature of the data (cat-
egorical or continuous), and result of normality tests. if you want to override this
the options are "subtype_count","median_iqr","mean_sd","skipped" and you spec-
ify this on a column by column bases with a named list (e.g c("Petal.Width"="mean_sd")).
Overriding the default does not check the type of data is correct for the summary
type and will potentially cause errors if this is not done correctly.

layout (optional) various layouts are defined as default. As of this version of tableone
they are "relaxed","compact","micro","simple","single","missing". The layouts
can be customised using the options options("tableone.format_list"=list(...)"),
and this is described in more detail in the vignettes.

override_percent_dp

(optional) a named list of overrides for the default precision of formatting per-
centages, following a c(<colname_1> = 2, <colname_2> = 4, ...) format.
columns not present in this list will use the defaults defined in the layout. See
the vignette on customisation.

override_real_dp

(optional) a named list of overrides for the default precision of formatting real
values, following a c(<colname_1> = 2, <colname_2> = 4, ...) format.
columns not present in this list will use the defaults defined in the layout. See
the utils::vignette("customisation", package="tableone").

p_format the format of the p-values: one of "sampl", "nejm", "jama", "lancet", "aim" but
any value here is overridden by the option("tableone.pvalue_formatter"=function(...))

font_size (optional) the font size for the table in points

font (optional) the font family for the table (which will be matched to closest on your
system)

footer_text any text that needs to be added at the end of the table, setting this to FALSE
dsables the whole footer (as does options("tableone.hide_footer"=TRUE)).

show_binary_value

if set this will filter the display of covariates where the number of possibilities is
exactly 2 to this value.

raw_output return comparison as t1_signif dataframe rather than formatted table

Details

It reports summary counts for the outcomes and a measure of significance of the relationship be-
tween outcome and intervention. Interpretation of significance tests, should include Bonferroni
adjustment.

Value

a huxtable formatted table.

14 compare_population

compare_population Compares the population against an intervention in a summary table

Description

The population comparison is a summary of the co-variates in a data set with no reference to out-
come, but comparing intervention groups. It will report summary statistics for continuous and
counts for categorical data, for each of the intervention groups, and reports on the significance of
the association in relation to the intervention groups. It gives a clear summary of whether data is
correlated to intervention.

Usage

compare_population(
df,
...,
label_fn = label_extractor(df),
units = extract_units(df),
override_type = list(),
override_method = list(),
layout = "compact",
override_percent_dp = list(),
override_real_dp = list(),
p_format = names(.pvalue.defaults),
font_size = getOption("tableone.font_size", 8),
font = getOption("tableone.font", "Arial"),
footer_text = NULL,
show_binary_value = NULL,
raw_output = FALSE

)

Arguments

df a dataframe of individual observations. If using the tidyselect syntax data
grouping defines the intervention group and should be present. if the formula
interface is used the first variable in the right hand side of the formula is used as
the intervention, in which case grouping is ignored.

... the columns of variables we wish to summarise. This can be given as a tidyselect
specification (see utils::vignette("syntax", package = "tidyselect")),
identifying the columns. Alternatively it can be given as a formula of the nature
outcome ~ intervention + covariate_1 + covariate_2 +
which may be more convenient if you are going on to do a model fit later. If the
latter format the left hand side is ignored (outcomes are not usual in this kind of
table).

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the

compare_population 15

dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

units (optional) a named list of units, following a c(<colname_1> = "<unit_1>", <colname_2> = "<unit_2>", ...)
format. columns not present in this list are assumed to have no units. Units may
be involved in the formatting of the summary output.

override_type (optional) a named list of data summary types. The default type for a column in a
data set are calculated using heurisitics depending on the nature of the data (cat-
egorical or continuous), and result of normality tests. if you want to override this
the options are "subtype_count","median_iqr","mean_sd","skipped" and you spec-
ify this on a column by column bases with a named list (e.g c("Petal.Width"="mean_sd")).
Overriding the default does not check the type of data is correct for the summary
type and will potentially cause errors if this is not done correctly.

override_method

if you want to override the comparison method for a particular variable the op-
tions are "chi-sq trend","fisher","t-test","2-sided wilcoxon","2-sided ks","anova","kruskal-
wallis","no comparison" and you specify this on a column by column bases with
a named list (e.g c("Petal.Width"="t-test"))

layout (optional) various layouts are defined as default. As of this version of tableone
they are "relaxed","compact","micro","simple","single","missing". The layouts
can be customised using the options options("tableone.format_list"=list(...)"),
and this is described in more detail in the vignettes.

override_percent_dp

(optional) a named list of overrides for the default precision of formatting per-
centages, following a c(<colname_1> = 2, <colname_2> = 4, ...) format.
columns not present in this list will use the defaults defined in the layout. See
the vignette on customisation.

override_real_dp

(optional) a named list of overrides for the default precision of formatting real
values, following a c(<colname_1> = 2, <colname_2> = 4, ...) format.
columns not present in this list will use the defaults defined in the layout. See
the utils::vignette("customisation", package="tableone").

p_format the format of the p-values: one of "sampl", "nejm", "jama", "lancet", "aim" but
any value here is overridden by the option("tableone.pvalue_formatter"=function(...))

font_size (optional) the font size for the table in points

font (optional) the font family for the table (which will be matched to closest on your
system)

footer_text any text that needs to be added at the end of the table, setting this to FALSE
dsables the whole footer (as does options("tableone.hide_footer"=TRUE)).

show_binary_value

if set this will filter the display of covariates where the number of possibilities is
exactly 2 to this value.

raw_output return comparison as t1_signif dataframe rather than formatted table

16 count_table

Value

a huxtable formatted table.

Examples

the heuristics detect that Petals in the iris data set are not normally
distributed and hence report median and IQR:
iris %>% dplyr::group_by(Species) %>% compare_population(tidyselect::everything())

Missing data
old = options("tableone.show_pvalue_method"=FALSE)
missing_diamonds %>%

dplyr::group_by(is_colored) %>%
compare_population(-color, layout="relaxed")

tmp = missing_diamonds %>% explicit_na() %>% dplyr::group_by(is_colored)
tmp %>% compare_population(-color,

footer_text = c(
"IQR: Interquartile range; CI: Confidence interval",
"Line two")

)

options(old)

count_table Group data count and calculate proportions by column.

Description

Group data count and calculate proportions by column.

Usage

count_table(
df,
rowGroupVars,
colGroupVars,
numExpr = dplyr::n(),
denomExpr = dplyr::n(),
totalExpr = dplyr::n(),
subgroupLevel = length(rowGroupVars),
glue = list(`Count [%] (N={sprintf("%d",N)})` =
"{sprintf(\"%d/%d [%1.1f%%]\", x, n, mean*100)}"),

label_fn = label_extractor(df),
font_size = getOption("tableone.font_size", 8),
font = getOption("tableone.font", "Arial")

)

cut_integer 17

Arguments

df a dataframe of linelist items

rowGroupVars the rows of the table. The last one of these is the denominator grouping

colGroupVars the column groupings of the table.

numExpr defines how the numerator is defined in the context of the column and row
groups (e.g. dplyr::n())

denomExpr defines how the numerator is defined in the context of the column and row (un-
grouped one level)

totalExpr defines how the column level total is defined

subgroupLevel defines how the numerator grouping is defined in terms of the row groupings

glue a named list of column value specifications.

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the
dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

font_size (optional) the font size for the table in points

font (optional) the font family for the table (which will be matched to closest on your
system)

Value

a huxtable with the count and proportions of the rows groups

Examples

diamonds %>% count_table(dplyr::vars(cut,clarity), dplyr::vars(color), subgroupLevel = 1)

cut_integer Cut and label an integer valued quantity

Description

Deals with some annoying issues classifying integer data sets, such as ages, into groups. where you
want to specify just the change over points as integers and clearly label the resulting ordered factor.

18 default.format

Usage

cut_integer(
x,
cut_points,
glue = "{label}",
lower_limit = -Inf,
upper_limit = Inf,
...

)

Arguments

x a vector of integer valued numbers, e.g. ages, counts

cut_points a vector of integer valued cut points which define the lower, inclusive boundary
of each group

glue a glue spec that may be used to generate a label. It can use low, high, next_low,
or label as values.

lower_limit the minimum value we should include (this is inclusive for the bottom category)
(default -Inf)

upper_limit the maximum value we should include (this is also inclusive for the top category)
(default Inf)

... not used

Value

an ordered factor of the integer

Examples

cut_integer(stats::rbinom(20,20,0.5), c(5,10,15))
cut_integer(floor(stats::runif(100,-10,10)), cut_points = c(2,3,4,6), lower_limit=0, upper_limit=10)
cut_integer(1:10, cut_points = c(1,3,9))

default.format Default table layout functions

Description

Customisation of output can use one of these entries as a starting point. A custom layout should
look like one of the entries in level 2 of this nested list, containing 4 named entries, one for each
type of table summary.

Usage

default.format

describe_data 19

Format

default.format:
A names list of lists:

level one The name of the table layout
level two The name of the summary type required. one of subtype_count, median_iqr,mean_sd,skipped
level three a named list of column=glue specification pairs. The column (itself a glue spec)

might reference N_total, N_present or .unit but typically will be a fixed string- it defines
the name of the table column to generate. The glue specification defines the layout of
that column, and can use summary statistics as below

subtype_count can use level, prob.0.5, prob.0.025, prob.0.975, unit, n, N. n is subgroup
count, N is data count.

median_iqr can use q.0.5, q.0.25, ..., unit, n, N - n excludes missing, N does not.
mean_sd can use mean, sd, unit, n, N - n excludes missing, N does not.
skipped can use n, N - n excludes missing, N does not.

describe_data Describe the data types and consistence

Description

The population description is a simple summary of the co-variates in a data set with no reference
to outcome, and not comparing intervention (although it might contain intervention rates.) It will
report summary statistics for continuous and counts for categorical data,

Usage

describe_data(
df,
...,
label_fn = label_extractor(df),
units = extract_units(df),
layout = "single",
font_size = getOption("tableone.font_size", 8),
font = getOption("tableone.font", "Arial"),
footer_text = NULL,
raw_output = FALSE

)

Arguments

df a dataframe of individual observations. Grouping, if present, is ignored. (n.b. if
you wanted to construct multiple summary tables a dplyr::group_map() call
could be used)

20 describe_population

... the columns of variables we wish to summarise. This can be given as a tidyselect
specification (see utils::vignette("syntax", package = "tidyselect")),
identifying the columns. Alternatively it can be given as a formula of the nature
outcome ~ intervention + covariate_1 + covariate_2 +
which may be more convenient if you are going on to do a model fit. If the latter
format the left hand side is ignored (outcomes are not usual in this kind of table).

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the
dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

units (optional) a named list of units, following a c(<colname_1> = "<unit_1>", <colname_2> = "<unit_2>", ...)
format. columns not present in this list are assumed to have no units. Units may
be involved in the formatting of the summary output.

layout (optional) various layouts are defined as default. As of this version of tableone
they are "relaxed","compact","micro","simple","single","missing". The layouts
can be customised using the options options("tableone.format_list"=list(...)"),
and this is described in more detail in the vignettes.

font_size (optional) the font size for the table in points
font (optional) the font family for the table (which will be matched to closest on your

system)
footer_text any text that needs to be added at the end of the table, setting this to FALSE

dsables the whole footer (as does options("tableone.hide_footer"=TRUE)).
raw_output return comparison as t1_signif dataframe rather than formatted table

Value

a huxtable formatted table.

Examples

Overriding the heuristics is possible:
iris %>% describe_data(tidyselect::everything())

diamonds %>% dplyr::group_by(is_colored) %>% describe_data(tidyselect::everything())

describe_population Describe the population in a summary table

Description

The population description is a simple summary of the co-variates in a data set with no reference
to outcome, and not comparing intervention (although it might contain intervention rates.) It will
report summary statistics for continuous and counts for categorical data,

describe_population 21

Usage

describe_population(
df,
...,
label_fn = label_extractor(df),
units = extract_units(df),
override_type = list(),
layout = "single",
override_percent_dp = list(),
override_real_dp = list(),
font_size = getOption("tableone.font_size", 8),
font = getOption("tableone.font", "Arial"),
footer_text = NULL,
show_binary_value = NULL,
raw_output = FALSE

)

Arguments

df a dataframe of individual observations. Grouping, if present, is ignored. (n.b. if
you wanted to construct multiple summary tables a dplyr::group_map() call
could be used)

... the columns of variables we wish to summarise. This can be given as a tidyselect
specification (see utils::vignette("syntax", package = "tidyselect")),
identifying the columns. Alternatively it can be given as a formula of the nature
outcome ~ intervention + covariate_1 + covariate_2 +
which may be more convenient if you are going on to do a model fit. If the latter
format the left hand side is ignored (outcomes are not usual in this kind of table).

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the
dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

units (optional) a named list of units, following a c(<colname_1> = "<unit_1>", <colname_2> = "<unit_2>", ...)
format. columns not present in this list are assumed to have no units. Units may
be involved in the formatting of the summary output.

override_type (optional) a named list of data summary types. The default type for a column in a
data set are calculated using heurisitics depending on the nature of the data (cat-
egorical or continuous), and result of normality tests. if you want to override this
the options are "subtype_count","median_iqr","mean_sd","skipped" and you spec-
ify this on a column by column bases with a named list (e.g c("Petal.Width"="mean_sd")).
Overriding the default does not check the type of data is correct for the summary
type and will potentially cause errors if this is not done correctly.

layout (optional) various layouts are defined as default. As of this version of tableone
they are "relaxed","compact","micro","simple","single","missing". The layouts

22 describe_population

can be customised using the options options("tableone.format_list"=list(...)"),
and this is described in more detail in the vignettes.

override_percent_dp

(optional) a named list of overrides for the default precision of formatting per-
centages, following a c(<colname_1> = 2, <colname_2> = 4, ...) format.
columns not present in this list will use the defaults defined in the layout. See
the vignette on customisation.

override_real_dp

(optional) a named list of overrides for the default precision of formatting real
values, following a c(<colname_1> = 2, <colname_2> = 4, ...) format.
columns not present in this list will use the defaults defined in the layout. See
the utils::vignette("customisation", package="tableone").

font_size (optional) the font size for the table in points

font (optional) the font family for the table (which will be matched to closest on your
system)

footer_text any text that needs to be added at the end of the table, setting this to FALSE
dsables the whole footer (as does options("tableone.hide_footer"=TRUE)).

show_binary_value

if set this will filter the display of covariates where the number of possibilities is
exactly 2 to this value.

raw_output return comparison as t1_signif dataframe rather than formatted table

Value

a huxtable formatted table.

Examples

the heuristics detect that Petals in the iris data set are not normally
distributed and hence report median and IQR:
iris %>% describe_population(tidyselect::everything())

Overriding the heuristics is possible:
iris %>% describe_population(

tidyselect::everything(),
override_type = c(Petal.Length = "mean_sd", Petal.Width = "mean_sd")

)

The counts sometimes seem redundant if there is no missing information:
diamonds %>% describe_population(tidyselect::everything())

however in a data set with missing values the denominators are important:
missing_diamonds %>% describe_population(tidyselect::everything())

for factor levels we can make the missing values more explicit
missing_diamonds %>% explicit_na() %>%

describe_population(tidyselect::everything())

in the output above the price variable is not # presented the way we would

diamonds 23

like so here we override the number of decimal places shown for the price
variable while we are at it we will use a mid point for the decimal point,
and make the variable labels sentence case.

old = options("tableone.dp"="\u00B7")
missing_diamonds %>%

explicit_na() %>%
describe_population(
tidyselect::everything(),
label_fn=stringr::str_to_sentence,
override_real_dp=list(price=6)

)
options(old)

diamonds A copy of the diamonds dataset

Description

with a binary class is_coloured based on the color column

Usage

diamonds

Format

diamonds:
Test data

explicit_na Make NA values in factor columns explicit

Description

Converts NA values in any factors in the dataframe into a new level - This is a thin wrapper for
forcats::fct_explicit_na() but with missing value level added regardless of whether any val-
ues missing. This forces an empty row in count tables.

Usage

explicit_na(df, na_level = "<missing>", hide_if_empty = FALSE)

Arguments

df the data frame
na_level a label for NA valued factors
hide_if_empty dont add a missing data category if no data is missing

24 extract_comparison

Value

the dataframe with all factor columns containing explicit na values

Examples

before
missing_diamonds %>% dplyr::group_by(cut) %>% dplyr::count()
after
missing_diamonds %>% explicit_na() %>% dplyr::group_by(cut) %>% dplyr::count()

extract_comparison Get summary comparisons and statistics between variables as raw
data.

Description

Get summary comparisons and statistics between variables as raw data.

Usage

extract_comparison(
df,
...,
label_fn = label_extractor(df),
override_type = list(),
p_format = names(.pvalue.defaults),
override_method = list(),
power_analysis = FALSE,
override_power = list(),
raw_output = FALSE

)

Arguments

df a dataframe of individual observations. If using the tidyselect syntax data
grouping defines the intervention group and should be present. if the formula
interface is used the first variable in the right hand side of the formula is used as
the intervention, in which case grouping is ignored.

... the outcomes are specified either as a tidyselect specification, in which case
the grouping of the df input determines the intervention and the output is the
same a compare_population() call with a tidyselect. Alternatively a set of
formulae can be provided that specify the outcomes on the left hand side, e.g.
outcome1 ~ intervention + cov1, outcome2 ~ intervention + cov1, ...
in this case the intervention must be the same for all formulae and used to de-
termine the comparison groups.

extract_comparison 25

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the
dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

override_type (optional) a named list of data summary types. The default type for a column in a
data set are calculated using heurisitics depending on the nature of the data (cat-
egorical or continuous), and result of normality tests. if you want to override this
the options are "subtype_count","median_iqr","mean_sd","skipped" and you spec-
ify this on a column by column bases with a named list (e.g c("Petal.Width"="mean_sd")).
Overriding the default does not check the type of data is correct for the summary
type and will potentially cause errors if this is not done correctly.

p_format the format of the p-values: one of "sampl", "nejm", "jama", "lancet", "aim" but
any value here is overridden by the option("tableone.pvalue_formatter"=function(...))

override_method

if you want to override the comparison method for a particular variable the op-
tions are "chi-sq trend","fisher","t-test","2-sided wilcoxon","2-sided ks","anova","kruskal-
wallis","no comparison" and you specify this on a column by column bases with
a named list (e.g c("Petal.Width"="t-test"))

power_analysis conduct sample size based power analysis.

override_power if you want to override the power calculation method for a particular variable the
options are "fisher","t-test","2-sided wilcoxon","2-sided ks","anova","kruskal-
wallis","no comparison" and you specify this on a column by column bases with
a named list (e.g c("Petal.Width"="t-test"))

raw_output return comparison as t1_signif dataframe rather than formatted table

Value

a list of accessor functions for the summary data allowing granular access to the results of the
analysis:

• comparison$compare(.variable, .characteristic = NULL) - prints a comparison between
the different intervention groups for the specified variable (and optionally the given character-
istic if it is a categorical variable).

• comparison$filter(.variable, .intervention = NULL, .characteristic = NULL) extracts
a given variable (e.g. gender), optionally for a given level of intervention (e.g. control)
and if categorical a given characteristic (e.g. male). This will output a dataframe with all
the calculated summary variables, for all qualifying intervention, variable and characteristic
combinations, significance tests (and power analyses) for the qualifying variable (comparing
intervention groups).

• comparison$signif_tests(.variable) - extracts for a given variable (e.g. gender) the sig-
nificance tests (and optionally power analyses) of the univariate comparison between different
interventions and the variable.

26 format_pvalue

• comparison$summary_stats(.variable, .intervention = NULL, .characteristic = NULL)
extracts a given variable (e.g. gender), optionally for a given level of intervention (e.g.
control) and if categorical a given characteristic (e.g. male). This returns only the sum-
mary stats for all qualifying intervention, variable and characteristic combinations.

extract_units Extracts units set as dataframe column attributes

Description

Extracts units set as dataframe column attributes

Usage

extract_units(df)

Arguments

df the data frame from set_units()

Value

a named list of column / unit pairs.

Examples

iris = iris %>% set_units(-Species, units="mm")
iris %>% extract_units()

format_pvalue Format a p-value

Description

Uses the default formatter set globally in options("tableone.pvalue_formatter") in prefer-
ence the one defined by p_format which is only used if no default is set.

Usage

format_pvalue(p.value, p_format = names(.pvalue.defaults))

Arguments

p.value the p-value to be formatted
p_format a name of a p-value formatter (one of sampl, nejm, jama, lancet, aim)

Value

a formatted P-value

get_footer_text 27

get_footer_text Get footer text if available

Description

The functions in tableone will record the methods used for reporting in a scientific paper. This is
both for normality assumption tests and for significance tests.

Usage

get_footer_text(df_output)

Arguments

df_output a data frame that is the output of a tableone function

Value

the footnotes if they exist as a list (NULL otherwise)

Examples

iris %>% describe_population(tidyselect::everything()) %>% get_footer_text()
iris %>% dplyr::group_by(Species) %>%

compare_population(tidyselect::everything()) %>% get_footer_text()

group_comparison Extract one or more comparisons for inserting into text.

Description

At some point we need to take information from the tables produced by tableone and place it
into the main text of the document. It is annoying if this cannot be done automatically. the
group_comparison() function enables extraction of one or more head to head comparisons and
provides a fairly flexible mechanism for building the precise format desired.

Usage

group_comparison(
t1_signif,
variable = NULL,
subgroup = NULL,
intervention = NULL,
percent_fmt = "%1.1f%%",
p_format = names(.pvalue.defaults),
no_summary = FALSE,

28 group_comparison

summary_glue = NULL,
summary_arrange = NULL,
summary_sep = ", ",
summary_last = " versus ",
no_signif = FALSE,
signif_glue = NULL,
signif_sep = NULL,
signif_last = NULL

)

Arguments

t1_signif a t1_signif as produced by as_t1_signif() or compare_population(...,
raw_output = TRUE).

variable a variable or set of variables to compare. If missing a set of approriate values is
displayed based on the columns of t1_signif

subgroup a subgroup or set of subgroups to compare.

intervention the side or sides of the intervention to select. N.b. using this effectively prevents
any statistical comparison as only one side will be available.

percent_fmt a sprintf format string that is applied to probability fields in the summary data
to convert to percentages.

p_format the format of the p-values: one of "sampl", "nejm", "jama", "lancet", "aim" but
any value here is overridden by the option("tableone.pvalue_formatter"=function(...))

no_summary only extract significance test values

summary_glue a glue specification that maps the summary statistics to a readable string.
summary_arrange

an expression by which to order the summary output

summary_sep a separator to combine the summary output (see glue::glue_collapse())

summary_last a separator to combine the last 2 summary outputs (see glue::glue_collapse())

no_signif do not try and include significance in the output. Sometimes this is the only
option if there is not enough of the comparison to retained by the variable,
subgroup, and intervention filters. (Specifically if there is only a comparison
between different subgroups, as the p-values will be for the different comparison
between intervention groups.)

signif_glue a glue specification that maps the combined summary output with the result of
the significance tests, to given a complete comparison.

signif_sep a separator to combine complete comparisons (see glue::glue_collapse())

signif_last a separator to combine the last 2 complete comparisons (see glue::glue_collapse())

Value

ideally a single string but various things will be returned depending on hos much input is con-
strained, and sometimes will provide guidance about what next to do. The intention is the function
to be used interactively until a satisfactory result is obtained.

label_extractor 29

Examples

tmp = diamonds %>%
dplyr::group_by(is_colored) %>%
set_units(price,units="£") %>%
compare_population(-color, raw_output=TRUE)

The tabular output is retrieved by converting to a huxtable
as_huxtable(tmp, layout="simple")

An unqualified group_comparison call gives informative messages
about what can be compared:
tmp %>% group_comparison()

filtering down the data gets us to a specific comparison:
tmp %>% group_comparison(variable = "cut", subgroup="Fair") %>% dplyr::glimpse()

With further interactive exploration the
data available for that comparison can be made into a glue string
tmp %>% group_comparison(variable = "cut", subgroup="Fair", intervention = "clear",

summary_glue = "{is_colored}: {x}/{n} ({prob.0.5}%)",
signif_glue = "{variable}={subgroup}; {text}; Overall p-value for '{variable}': {p.value}.")

group comparisons above using many individual subgroups are a bit confusing because
the p-value is at the variable level. This is less of an issue for continuous
or binary values.
tmp %>% group_comparison(

variable = "price",
summary_glue = "{is_colored}: {unit}{q.0.5}; IQR: {q.0.25} \u2014 {q.0.75} (n={n})",
signif_glue = "{variable}: {text}; P-value {p.value}.")

Sometimes we only want to extract a p-value:
tmp %>%

group_comparison(variable = "cut", subgroup="Fair", no_summary=TRUE) %>%
dplyr::glimpse()

label_extractor Extract labels from a dataframe column attributes

Description

Retrieve column labels are embedded as an attribute of each column.

Usage

label_extractor(df, ..., attribute = "label")

Arguments

df a dataframe containing some labels

30 make_factors

... additional string manipulation functions to apply e.g. tolower

attribute the name of the label containing attribute (defaults to "label")

Value

a labelling function. This is specific to the dataframe provided in df

Examples

iris = set_labels(iris, c(
"Sepal Length", "Sepal Width",
"Petal Length", "Petal Width", "Species"

))
fn = label_extractor(iris,tolower)
fn(colnames(iris))

make_factors Convert discrete data to factors

Description

It is simpler for presentation and sometimes more correct for discrete valued data to be represented
as factors. Such discrete valued data might be logical values, character values, or numeric values
with a limited number of levels (e.g. scores). this function lets you convert (a subset of) data frame
columns into factors using

Usage

make_factors(
df,
...,
.logical = c("yes", "no"),
.numeric = "{name}={value}",
.character = NULL

)

Arguments

df a data frame

... either a tidyselect specification or a formula with the right hand side defining
the columns to convert (left hand side is ignored)

.logical (optional) a length 2 vector defining the levels of TRUE, then FALSE.

.numeric (optional) if provided it must either be a named list e.g. c(column_name =
"{name}:{value}", ..., .default="{value}") pairs which define the way
in which numeric columns are converted to factor levels. If a single value is
given then all numerics are converted in the same way (this is the default). If
there are some values that you are not certain you want to convert setting a limit

make_factors 31

on the maximum number of levels in a generated factor may be a good idea
(i.e. options("tableone.max_discrete_levels"=16)) otherwise all values
are converted

.character in general character columns are converted into a factor with the default levels.
To explicitly set levels a named list can be given here which c(colname_1 =
c("level_1", "level_2", ...), colname_2 = ...)

Value

a dataframe with the columns converted to factors

Examples

iris %>%
make_factors(tidyselect::ends_with("Length"), .numeric = "{name}={round(value)}") %>%
dplyr::glimpse()

Convert everything in diamonds to be a factor, rounding all
the numeric values and converting all the names to upper case
tmp = diamonds %>%

dplyr::mutate(is_colored = color > "F") %>%
make_factors(tidyselect::everything(), .numeric="{toupper(name)}={round(value)}")

as we included `price` which has very many levels one factor is unuseable with 11602 levels:
length(levels(tmp$price))

we could explicitly exclude it from the `tidyselect` syntax `...` parameter:
diamonds %>% dplyr::mutate(is_colored = color > "F") %>%

make_factors(-price, .numeric="{toupper(name)}={round(value)}") %>%
dplyr::glimpse()

or alternatively we set a limit on the maximum number of factors, which
in this example picks up the `depth` and `table` columns as exceeding this
new limit:

old = options("tableone.max_discrete_levels"=16)
diamonds %>% dplyr::mutate(is_colored = color > "F") %>%

make_factors(tidyselect::everything(), .numeric="{toupper(name)}={round(value)}") %>%
dplyr::glimpse()

options(old)

converting a character vector. Here we specify `.character` as a list giving the
possible levels of `alpha2`. Values outside of this list are converted to `NA`

set.seed(100)
eg_character = tibble::tibble(

alpha1 = sample(letters,50,replace=TRUE),
alpha2 = sample(LETTERS,50,replace=TRUE)

)

eg_character %>%

32 mnar_two_class_1000

make_factors(tidyselect::everything(), .character = list(alpha2 = LETTERS[3:20]))

missing_diamonds A copy of the diamonds dataset

Description

with 10% of entries replaced by NA and a binary class is_coloured based on the color column

Usage

missing_diamonds

Format

missing_diamonds:
Test data

mnar_two_class_1000 Missing not at random 2 class 1000 items

Description

A random data test dataset with 2 classes (groupings column) one of which has 10% missing data
and the other has 20%

Usage

mnar_two_class_1000

Format

mnar_two_class_1000:
Test data

multi_class_negative 33

multi_class_negative A multi-class dataset with equal random samples in each class

Description

A multi-class dataset with equal random samples in each class

Usage

multi_class_negative

Format

multi_class_negative:
Test data

one_class_test_100 A single-class dataset with 100 items of random data

Description

columns contain a set of random data of different types e.g. uniform continuous, normal, binomial,
multinomial.

Usage

one_class_test_100

Format

one_class_test_100:
Test data

34 remove_missing

one_class_test_1000 A single-class dataset with 1000 items of random data

Description

columns contain a set of random data of different types e.g. uniform continuous, normal, binomial,
multinomial.

Usage

one_class_test_1000

Format

one_class_test_1000:
Test data

remove_missing Remove variables that fail a missing data test from models

Description

Comparing missingness by looking at a table is good but we also want to update models to exclude
missing data from the predictors.

Usage

remove_missing(
df,
...,
label_fn = label_extractor(df),
significance_limit = 0.05,
missingness_limit = 0.1

)

Arguments

df a dataframe of individual observations. If using the tidyselect syntax data
grouping defines the intervention group and should be present. if the formula
interface is used the first variable in the right hand side of the formula is used as
the intervention, in which case grouping is ignored.

... a list of formulae that specify the models that we want to check

set_labels 35

label_fn (optional) a function for mapping a co-variate column name to printable la-
bel. This is by default a no-operation and the output table will contain the
dataframe column names as labels. A simple alternative would be some form of
dplyr::case_when lookup, or a string function such as stringr::str_to_sentence.
(N.b. this function must be vectorised). Any value provided here will be over-
ridden by the options("tableone.labeller" = my_label_fn) which allows
global setting of the labeller.

significance_limit

the limit at which we reject the hypothesis that the data is missing at random.
missingness_limit

the limit at which too much data is missing to include the predictor.

Value

a list of formulae with missing parameters removed

Examples

df = iris %>%
dplyr::mutate(Petal.Width = ifelse(

stats::runif(dplyr::n()) < dplyr::case_when(
Species == "setosa" ~ 0.2,
Species == "virginica" ~ 0.1,
TRUE~0

),
NA,
Petal.Width

))
remove_missing(df, ~ Species + Petal.Width + Sepal.Width, ~ Species + Petal.Length + Sepal.Length)

set_labels Set a label attribute

Description

Set a label attribute

Usage

set_labels(df, labels, attribute = "label")

Arguments

df a dataframe

labels a vector of labels, one for each column

attribute the name of the label attribute (defaults to "label")

36 set_units

Value

the same dataframe with each column labelled

Examples

iris = set_labels(iris,
c("Sepal Length", "Sepal Width",
"Petal Length", "Petal Width", "Species"
))

fn = label_extractor(iris,tolower)
fn(colnames(iris))

set_units Title

Description

Title

Usage

set_units(df, ..., units)

Arguments

df a dataframe

... a tidyselect specification or a formula

units a list of unit as strings which must be either 1 or the same length as the columns
matched by the tidyselect.

Value

the dataframe with the unit attribute updated

Examples

iris = iris %>% set_units(-Species, units="mm")
iris %>% extract_units()

test_cols 37

test_cols A list of columns for a test case

Description

A list of columns for a test case

Usage

test_cols

Format

test_cols:
Test data

two_class_test A two-class dataset with random data

Description

columns contain a set of random data of different types e.g. uniform continuous, normal, binomial,
multinomial. in grouping 1 there is 100 items in grouping 2 there are 1000 items

Usage

two_class_test

Format

one_class_test_100:
Test data

Index

∗ datasets
bad_test_cols, 9
default.format, 18
diamonds, 23
missing_diamonds, 32
mnar_two_class_1000, 32
multi_class_negative, 33
one_class_test_100, 33
one_class_test_1000, 34
test_cols, 37
two_class_test, 37

as_huxtable.t1_shape, 2
as_huxtable.t1_signif, 3
as_huxtable.t1_summary, 5
as_t1_shape, 6
as_t1_signif, 7
as_t1_summary, 8

bad_test_cols, 9

compare_missing, 10
compare_outcomes, 11
compare_population, 14
count_table, 16
cut_integer, 17

default.format, 18
describe_data, 19
describe_population, 20
diamonds, 23
dplyr::case_when, 6, 7, 9, 11, 12, 15, 17, 20,

21, 25, 35
dplyr::group_map(), 6, 9, 19, 21

explicit_na, 23
extract_comparison, 24
extract_units, 26

forcats::fct_explicit_na(), 23
format_pvalue, 26

get_footer_text, 27
group_comparison, 27

label_extractor, 29

make_factors, 30
missing_diamonds, 32
mnar_two_class_1000, 32
multi_class_negative, 33

one_class_test_100, 33
one_class_test_1000, 34

remove_missing, 34

set_labels, 35
set_units, 36
stringr::str_to_sentence, 6, 7, 9, 11, 12,

15, 17, 20, 21, 25, 35

test_cols, 37
two_class_test, 37

38

	as_huxtable.t1_shape
	as_huxtable.t1_signif
	as_huxtable.t1_summary
	as_t1_shape
	as_t1_signif
	as_t1_summary
	bad_test_cols
	compare_missing
	compare_outcomes
	compare_population
	count_table
	cut_integer
	default.format
	describe_data
	describe_population
	diamonds
	explicit_na
	extract_comparison
	extract_units
	format_pvalue
	get_footer_text
	group_comparison
	label_extractor
	make_factors
	missing_diamonds
	mnar_two_class_1000
	multi_class_negative
	one_class_test_100
	one_class_test_1000
	remove_missing
	set_labels
	set_units
	test_cols
	two_class_test
	Index

