Bayesian adjustment of panel test error

devtools::load_all()
#> ℹ Loading testerror
#> ℹ Re-compiling testerror (debug build)
#> ── R CMD INSTALL ───────────────────────────────────────────────────────────────
#> * installing *source* package ‘testerror’ ...
#> ** using staged installation
#> * DONE (testerror)
library(tidyverse)
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#> ✔ dplyr     1.1.4     ✔ readr     2.1.5
#> ✔ forcats   1.0.0     ✔ stringr   1.5.1
#> ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
#> ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
#> ✔ purrr     1.0.2     
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ readr::edition_get()   masks testthat::edition_get()
#> ✖ dplyr::filter()        masks stats::filter()
#> ✖ purrr::is_null()       masks testthat::is_null()
#> ✖ dplyr::lag()           masks stats::lag()
#> ✖ readr::local_edition() masks testthat::local_edition()
#> ✖ dplyr::matches()       masks tidyr::matches(), testthat::matches()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(testerror)
options(mc.cores = 2) # parallel::detectCores())
rstan::rstan_options(auto_write = FALSE)
here::i_am("vignettes/testerror.Rmd")
#> here() starts at /tmp/RtmpG0SwlU/Rbuild1bc0719e6483/testerror
source(here::here("vignettes/formatting.R"))

BinaxNOW test results


binax_pos = 26
binax_n = 786

# Fit beta distributions to sinclair 2013 data:
# We apply a widening to increase uncertainty in sensitivity
binax_sens = beta_params(median = 0.740, lower = 0.666, upper = 0.823, widen = 5)
binax_spec = beta_params(median = 0.972, lower=  0.927, upper = 0.998)

tmp1 = testerror::bayesian_true_prevalence_model(
  pos_obs = binax_pos,
  n_obs = binax_n,
  sens = binax_sens,
  spec = binax_spec,
  model_type = "logit"
)
#> recompiling to avoid crashing R session
#> Warning: There were 96 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess

binax_summ = tmp1$summary %>%
  dplyr::transmute(
  Test = "Binax",
  Positivity = sprintf("%d/%d (%1.2f%%)", binax_pos, binax_n, binax_pos/binax_n*100),
  `Estimated prevalence` = prevalence.label,
  `Sensitivity` = sens.label,
  `Specificity` = spec.label,
  `Method` = prevalence.method
  )

binax_summ %>% default_table()
TestPositivityEstimated prevalenceSensitivitySpecificityMethod
Binax26/786 (3.31%)0.39% [0.00% — 3.75%]75.17% [53.02% — 89.31%]97.24% [95.67% — 99.01%]bayes (logit)

UAD1 results

For this description we are going to assume we have only count data for panel and components, and we have limited information about component tests.


# data from Forstner et al (2019)
components = tibble::tibble(
  serotype = factor(c("1", "3", "4", "5", "6A", "6B", "7F", "9V", "14", "18C", "19A", "19F", "23F")),
  pos = c(2, 30, 2, 1, 4, 0, 7, 1, 1, 3, 2, 3, 4),
  n = 796
)

uad1_pos = 59
uad1_n = 796

# control group data
# negatives at 
uad1_spec = spec_prior() %>% 
  # data from Pride et al
  update_posterior(0,17)

# Datd from Pride et al
uad1_controls = tibble::tibble(
  serotype = factor(c("1", "3", "4", "5", "6A", "6B", "7F", "9V", "14", "18C", "19A", "19F", "23F")),
  false_neg_diseased = c(0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
  n_diseased = c(7, 1, 3, 1, 1, 0, 4, 2, 7, 0, 6, 0, 2),
  # In the design of UAD1 the cut off is calibrated on 400 negative samples and 
  # set to make 2 positive
  
  # Forstner et al (2019) control group
  # In the control group of 397 non-CAP patients, 1 patient had to
  # be excluded because of indeterminable results (0.3%, see Fig. 1)
  # and SSUAD was positive in 3 patients (0.8%). Of those 3 non-CAP
  # patients, 2 were positive for serotype 18C and 1 person for two
  # pneumococcal serotypes (5, 7F).

  false_pos_controls = 2+c(0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 2L, 0L, 0L, 0L),
  n_controls = 400+396
)


uad1_sens = sens_prior() %>% 
  # data from Pride et al
  update_posterior(17,17)

With this we can use a bayesian model to construct adjusted estimates


corr3 = testerror::bayesian_panel_true_prevalence_model(
  panel_pos_obs = uad1_pos,
  panel_n_obs = uad1_n,
  panel_name = "PCV13",
  
  pos_obs = components$pos,
  n_obs = components$n,
  test_names = components$serotype,
  
  false_pos_controls = uad1_controls$false_pos_controls,
  n_controls = uad1_controls$n_controls,
  false_neg_diseased = uad1_controls$false_neg_diseased,
  n_diseased = uad1_controls$n_diseased,
  
  panel_sens = uad1_sens,
  model_type = "logit"
)
#> recompiling to avoid crashing R session
#>                 5.103 seconds (Total)
#> Chain 1:
corr3$summary %>% 
  mutate(
    pos_obs = c(components$pos, uad1_pos),
    n_obs = c(components$n, uad1_n)
  ) %>%
  dplyr::transmute(
  Test = test,
  Positivity = sprintf("%d/%d (%1.2f%%)", pos_obs, n_obs, pos_obs/n_obs*100),
  `Estimated prevalence` = prevalence.label,
  `Sensitivity` = sens.label,
  `Specificity` = spec.label,
  `Method` = prevalence.method
) %>% 
  bind_rows(binax_summ) %>%
  default_table() %>% huxtable::set_top_border(row = huxtable::final(2), col=huxtable::everywhere, value = 1)
TestPositivityEstimated prevalenceSensitivitySpecificityMethod
12/796 (0.25%)0.03% [0.00% — 0.42%]97.45% [77.32% — 99.92%]99.81% [99.50% — 99.96%]bayes (logit)
330/796 (3.77%)5.46% [2.93% — 20.38%]62.47% [16.70% — 96.77%]99.80% [99.29% — 99.97%]bayes (logit)
42/796 (0.25%)0.03% [0.00% — 0.46%]96.19% [61.35% — 99.91%]99.81% [99.51% — 99.97%]bayes (logit)
51/796 (0.13%)0.01% [0.00% — 0.33%]93.59% [28.35% — 99.87%]99.79% [99.47% — 99.94%]bayes (logit)
6A4/796 (0.50%)0.16% [0.00% — 0.99%]94.09% [33.84% — 99.87%]99.76% [99.39% — 99.96%]bayes (logit)
6B0/796 (0.00%)0.01% [0.00% — 0.29%]88.52% [7.55% — 99.83%]99.91% [99.67% — 99.99%]bayes (logit)
7F7/796 (0.88%)0.33% [0.00% — 1.29%]96.50% [66.04% — 99.92%]99.61% [99.11% — 99.91%]bayes (logit)
9V1/796 (0.13%)0.02% [0.00% — 0.31%]95.14% [49.07% — 99.89%]99.85% [99.58% — 99.97%]bayes (logit)
141/796 (0.13%)0.01% [0.00% — 0.29%]97.41% [76.37% — 99.92%]99.85% [99.59% — 99.98%]bayes (logit)
18C3/796 (0.38%)0.02% [0.00% — 0.65%]87.62% [8.80% — 99.87%]99.62% [99.22% — 99.86%]bayes (logit)
19A2/796 (0.25%)0.03% [0.00% — 0.41%]97.31% [73.45% — 99.92%]99.81% [99.49% — 99.96%]bayes (logit)
19F3/796 (0.38%)0.07% [0.00% — 0.94%]89.08% [9.69% — 99.86%]99.77% [99.41% — 99.96%]bayes (logit)
23F4/796 (0.50%)0.14% [0.00% — 0.88%]95.17% [48.86% — 99.90%]99.75% [99.37% — 99.96%]bayes (logit)
PCV1359/796 (7.41%)6.69% [4.15% — 21.11%]68.11% [23.90% — 94.95%]96.90% [95.91% — 97.81%]bayes (logit)
Binax26/786 (3.31%)0.39% [0.00% — 3.75%]75.17% [53.02% — 89.31%]97.24% [95.67% — 99.01%]bayes (logit)

Sensitivity analysis with different UAD test parameters


# senstivity / specificity from Kakiuchi et al 

kak_uad1_sens = beta_params(median = 0.741, lower = 0.537, upper = 0.889)
kak_uad1_spec = beta_params(median = 0.954, lower = 0.917, upper = 0.978) %>% 
  # data from Pride et al
  update_posterior(17,17)

corr4 = testerror::bayesian_panel_true_prevalence_model(
  panel_pos_obs = uad1_pos,
  panel_n_obs = uad1_n,
  panel_name = "PCV13",
  
  pos_obs = components$pos,
  n_obs = components$n,
  test_names = components$serotype,
  
  false_pos_controls = uad1_controls$false_pos_controls,
  n_controls = uad1_controls$n_controls,
  false_neg_diseased = uad1_controls$false_neg_diseased,
  n_diseased = uad1_controls$n_diseased,
  
  panel_sens = kak_uad1_sens,
  panel_spec = kak_uad1_spec,
  model_type="logit"
)
#> recompiling to avoid crashing R session
#> recompiling to avoid crashing R session
#> :                2.277 seconds (Total)
#> Chain 2:
#> Warning: There were 1 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems

corr4$summary %>% 
  mutate(
    pos_obs = c(components$pos, uad1_pos),
    n_obs = c(components$n, uad1_n)
  ) %>%
  dplyr::transmute(
  Test = test,
  Positivity = sprintf("%d/%d (%1.2f%%)", pos_obs, n_obs, pos_obs/n_obs*100),
  `Estimated prevalence` = prevalence.label,
  `Sensitivity` = sens.label,
  `Specificity` = spec.label,
  `Method` = prevalence.method
) %>% bind_rows(
  binax_summ
) %>% 
  default_table() %>% huxtable::set_top_border(row = huxtable::final(2), col=huxtable::everywhere, value = 1)
TestPositivityEstimated prevalenceSensitivitySpecificityMethod
12/796 (0.25%)0.02% [0.00% — 0.42%]97.58% [77.84% — 99.91%]99.80% [99.49% — 99.96%]bayes (logit)
330/796 (3.77%)5.00% [3.18% — 8.45%]67.03% [42.16% — 88.34%]99.78% [99.22% — 99.97%]bayes (logit)
42/796 (0.25%)0.02% [0.00% — 0.42%]96.11% [57.89% — 99.90%]99.79% [99.49% — 99.96%]bayes (logit)
51/796 (0.13%)0.01% [0.00% — 0.31%]93.78% [37.48% — 99.87%]99.78% [99.46% — 99.94%]bayes (logit)
6A4/796 (0.50%)0.14% [0.00% — 1.02%]94.09% [30.72% — 99.88%]99.73% [99.35% — 99.95%]bayes (logit)
6B0/796 (0.00%)0.01% [0.00% — 0.29%]88.01% [7.92% — 99.83%]99.90% [99.65% — 99.99%]bayes (logit)
7F7/796 (0.88%)0.30% [0.00% — 1.25%]96.49% [65.80% — 99.91%]99.56% [99.08% — 99.89%]bayes (logit)
9V1/796 (0.13%)0.02% [0.00% — 0.34%]95.12% [47.93% — 99.90%]99.85% [99.57% — 99.97%]bayes (logit)
141/796 (0.13%)0.01% [0.00% — 0.30%]97.44% [76.86% — 99.93%]99.85% [99.56% — 99.97%]bayes (logit)
18C3/796 (0.38%)0.02% [0.00% — 0.65%]88.56% [9.47% — 99.83%]99.60% [99.20% — 99.85%]bayes (logit)
19A2/796 (0.25%)0.02% [0.00% — 0.45%]97.36% [73.60% — 99.94%]99.80% [99.48% — 99.96%]bayes (logit)
19F3/796 (0.38%)0.07% [0.00% — 1.01%]88.92% [10.65% — 99.88%]99.76% [99.41% — 99.96%]bayes (logit)
23F4/796 (0.50%)0.14% [0.00% — 0.86%]95.17% [51.55% — 99.88%]99.73% [99.33% — 99.96%]bayes (logit)
PCV1359/796 (7.41%)6.02% [4.24% — 9.10%]71.67% [51.37% — 86.38%]96.67% [95.69% — 97.53%]bayes (logit)
Binax26/786 (3.31%)0.39% [0.00% — 3.75%]75.17% [53.02% — 89.31%]97.24% [95.67% — 99.01%]bayes (logit)