Package: testerror (via r-universe)

October 29, 2024
Title Uncertainty in Multiplex Panel Testing
Version 0.1.0

Description Provides methods to support the estimation of
epidemiological parameters based on the results of multiplex
panel tests.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3

Imports magrittr, dplyr, tidyr, tibble, tidyselect, ggplot2, memoise,
glue, digest, rappdirs, fs, forcats, purtr, rlang, scales,
stringr, rstan (>= 2.18.1), stats, extraDistr, interfacer (>=
0.1.7), pkgutils (>= 0.1.0), BH (>= 1.66.0), Rcpp (>=0.12.0),
RceppEigen (>= 0.3.3.3.0), RcppParallel (>=5.0.1), StanHeaders
(>=2.18.0)

Remotes github::bristol-vaccine-centre/interfacer,
github::bristol-vaccine-centre/pkgutils

Suggests tidyverse, knitr, rmarkdown, binom, huxtable, here, testthat,
devtools, ggh4x

VignetteBuilder knitr
Config/testthat/edition 3

URL https://bristol-vaccine-centre.github.io/testerror/index.html,
https://github.com/bristol-vaccine-centre/testerror,
https://doi.org/10.5281/zenodo.7691196

BugReports https://github.com/bristol-vaccine-centre/testerror/issues
Depends R (>=3.4.0)

LazyData true

Repository https://bristol-vaccine-centre.r-universe.dev

RemoteUrl https://github.com/bristol-vaccine-centre/testerror

RemoteRef 0.1.0

RemoteSha 4420c57¢703087827a0c63cct5t2229da26b66f8

https://bristol-vaccine-centre.github.io/testerror/index.html
https://github.com/bristol-vaccine-centre/testerror
https://doi.org/10.5281/zenodo.7691196
https://github.com/bristol-vaccine-centre/testerror/issues

2 Contents

Contents
dnput_data ... oL e e e 3
dnput_panel_data oL 3
output_data e e e e 4
apparent_prevalenceo e 5
as_tibble.beta_dist e 5
as_tibble.beta_dist_list e 6
bayesian_component_logit_model Lo 6
bayesian_component_simpler_model 0oL 8
bayesian_panel_complex_model L 9
bayesian_panel_logit_model L 11
bayesian_panel_simpler_model oL oo 12
bayesian_panel_true_prevalence_model L. 14
bayesian_true_prevalence_model Lo 16
beta_dist e e 17
beta_fit e 18
beta_params L e e e e 18
ci_to_logitnorm 19
formatbeta_diSt e e 20
format.beta_dist_list e 20
fp_p_value e e 21
fp_signif_level e 22
get_beta_shape L 23
get_beta_shape.beta_dist 24
get_beta_shape.beta_dist_list 24
IMv_logit L e 25
length.beta_dist L 25
length.beta_dist_list 26
logit . . . e e e 26
odds_ratio_Ve e e e e e 27
optimal_performance Lo L 28
panel_prevalence 29
Panel_Sens e e 29
panel_sens_estimatort e e e e 30
panel_Spec.o e e e e e 31
prevalence_lang_reiczigel L 31
prevalence_panel_lang_reiczigel o Lo 32
printbeta_dist e 34
print.beta_dist_list 34
relative_risk_ve 35
repbeta_dist. 36
rogan_gladen L e e e e e 36
SENS_PIIOT .« v v v v v i e e e e e e e e e e e e e e e e e 37
SPEC_PIIOT .« v v v v e et e e e e e e e e e e e e e e e e e 37
true_panel_prevalence 38
true_prevalence e e e e e 40

uncertain_panel_rogan_gladen oL Lo 41

.input_data 3
uncertain_panel_sens_estimator e e 43
uncertain_panel_spec L. e e e 44
uncertain_rogan_gladen Lo 45
underestimation_threshold 46
uniform_prioro e e 47
uninformed_prior e e e e e e 47
update_poSterior i e e e e e e e e e e e e e e 48
update_posterior.beta_dist L Lo 48
update_posterior.beta_dist_list Lo 49

Index 50

.input_data Dataframe format for component test results

Description

A dataframe containing the following columns:

* id (character) - the patient identifier
* test (factor) - the test type

* result (logical) - the test result

Ungrouped.

No default value.

Usage

.input_data

Format

An object of class iface (inherits from tb1l_df, tbl, data.frame) with 3 rows and 3 columns.

.input_panel_data Dataframe format for panel test results

Description

A dataframe containing the following columns:

* id (character) - the patient identifier

* result (logical) - the panel result

Ungrouped.

No default value.

4 .output_data

Usage

.input_panel_data

Format

An object of class iface (inherits from tb1_df, tbl, data.frame) with 2 rows and 3 columns.

.output_data Dataframe format for true prevalence results

Description

A dataframe containing the following columns:

* test (character) - the name of the test or panel

* prevalence.lower (numeric) - the lower estimate

¢ prevalence.median (numeric) - the median estimate

* prevalence.upper (numeric) - the upper estimate

* prevalence.method (character) - the method of estimation

* prevalence.label (character) - a fomatted label of the true prevalence estimate with CI
Ungrouped.

No default value.

Usage

.output_data

Format

An object of class iface (inherits from tb1_df, tbl, data.frame) with 6 rows and 3 columns.

apparent_prevalence 5

apparent_prevalence Apparent prevalence from known prevalence

Description

The observed counts of disease is going to be a binomial but with the apparent prevalence as a
probability. This will never be less than (1-specificity) of the test (and never more than the
sensitivity). When either of those quantities are uncertain the shape of the distribution of observed
counts is not clear cut.

Usage

apparent_prevalence(p, sens, spec)

Arguments
p the true value of the prevalence
sens the sensitivity of the test
spec the specificity of the test
Value

the expected value of apparent prevalence

Examples

apparent_prevalence(@, 0.75, 0.97)
apparent_prevalence(1, 0.75, 0.97)

as_tibble.beta_dist convert a beta distribution to a tibble

Description

convert a beta distribution to a tibble

Usage
S3 method for class 'beta_dist'
as_tibble(x, prefix = NULL, confint = .95, ...)
Arguments
X the beta distribution
prefix name to output columns prefix.lower, prefix.upper etc
confint confidence intervals

not used

6 bayesian_component_logit_model

as_tibble.beta_dist_list
convert a list of betas to a tibble

Description

convert a list of betas to a tibble

Usage

S3 method for class 'beta_dist_list'
as_tibble(x, ...)

Arguments
X a beta dist list
Arguments passed on to as_tibble.beta_dist
prefix name to output columns prefix.lower, prefix.upper etc
confint confidence intervals
Value
a tibble

bayesian_component_logit_model
Bayesian simpler model true prevalence for component

Description

Bayesian simpler model true prevalence for component

Usage

bayesian_component_logit_model(
pos_obs,
n_obs,
false_pos_controls = NULL,
n_controls = NULL,
false_neg_diseased
n_diseased = NULL,
sens = sens_prior(),
spec = spec_prior(),
confint = 0.95,

NULL,

bayesian_component_logit_model 7

fmt = "%1.2f%% [%1.2f%% — %1.2f%%1",

the number of positive observations for a given test

chains = 4,
warmup = 1000,
iter = 2000,
cache_result = TRUE
)
Arguments
pos_obs
n_obs

the number of observations for a given test

false_pos_controls

n_controls

the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

the number of controls in the specificity disease-free control group.

false_neg_diseased

n_diseased

sens
spec
confint
fmt
chains

warmup

iter

cache_result

Value

the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

the number of confirmed disease cases in the sensitivity control group.

not used

the prior sensitivity of the test as a beta_dist.

the prior specificity of the test as a beta_dist.

confidence interval limits

a sprintf formatting string accepting 3 numbers

A positive integer specifying the number of Markov chains. The default is 4.

A positive integer specifying the number of warmup (aka burnin) iterations per
chain. If step-size adaptation is on (which it is by default), this also controls
the number of iterations for which adaptation is run (and hence these warmup
samples should not be used for inference). The number of warmup iterations
should be smaller than iter and the default is iter/2.

A positive integer specifying the number of iterations for each chain (including
warmup). The default is 2000.

save the result of the sampling in memory for the current session

a list of dataframes containing the prevalence, sensitivity, and specificity estimates, and a stanfit
object with the raw fit data

bayesian_component_simpler_model

bayesian_component_simpler_model

Bayesian simpler model true prevalence for component

Description

Bayesian simpler model true prevalence for component

Usage

bayesian_component_simpler_model(

pos_obs,
n_obs,

false_pos_controls = NULL,

n_controls =

NULL,

false_neg_diseased = NULL,
n_diseased = NULL,

L

sens = uniform_prior(),

spec = uniform_prior(),

confint = 0.95,

fmt = "%1.2f%% [%1.2f%% — %1.2f%%]1",

chains = 4,

warmup = 1000,

iter = 2000,
cache_result

Arguments

pos_obs

n_obs

= TRUE

the number of positive observations for a given test

the number of observations for a given test

false_pos_controls

n_controls

the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

the number of controls in the specificity disease-free control group.

false_neg_diseased

n_diseased

sens
spec

confint

the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

the number of confirmed disease cases in the sensitivity control group.
not used

the prior sensitivity of the test as a beta_dist.

the prior specificity of the test as a beta_dist.

confidence interval limits

bayesian_panel_complex_model 9

fmt a sprintf formatting string accepting 3 numbers
chains A positive integer specifying the number of Markov chains. The default is 4.
warmup A positive integer specifying the number of warmup (aka burnin) iterations per

chain. If step-size adaptation is on (which it is by default), this also controls
the number of iterations for which adaptation is run (and hence these warmup
samples should not be used for inference). The number of warmup iterations
should be smaller than iter and the default is iter/2.

iter A positive integer specifying the number of iterations for each chain (including
warmup). The default is 2000.

cache_result save the result of the sampling in memory for the current session

Value

a list of dataframes containing the prevalence, sensitivity, and specificity estimates, and a stanfit
object with the raw fit data

bayesian_panel_complex_model
Bayesian models true prevalence for panel

Description

Uses resampling to incorporate uncertainty of sensitivity and specificity into an estimate of true
prevalence from a given value of apparent prevalence.

Usage

bayesian_panel_complex_model(
test_results = testerror::.input_data,
false_pos_controls = NULL,
n_controls = NULL,
false_neg_diseased = NULL,
n_diseased = NULL,
sens = uniform_prior(),
spec = uniform_prior(),
panel_sens = uniform_prior(),
panel_spec = uniform_prior(),
panel_name = "Panel”,
confint = 0.95,
fmt = "%1.2f%% [%1.2f%% — %1.2f%%]1",

chains = 4,
warmup = 1000,
iter = 2000,

cache_result = TRUE

10

Arguments

test_results

bayesian_panel_complex_model

A dataframe containing the following columns:
¢ id (character) - the patient identifier
* test (factor) - the test type
* result (logical) - the test result

Ungrouped.

No default value.

false_pos_controls

n_controls

the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

the number of controls in the specificity disease-free control group.

false_neg_diseased

n_diseased

sens
spec
panel_sens
panel_spec
panel_name
confint
fmt

chains

warmup

iter

cache_result

Details

the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

the number of confirmed disease cases in the sensitivity control group.

not used

the prior sensitivity of the test as a beta_dist.

the prior specificity of the test as a beta_dist.

the prior sensitivity of the panel as a beta_dist (optional)

the prior specificity of the panel as a beta_dist (optional)

the name of the panel for combined result

confidence interval limits

a sprintf formatting string accepting 3 numbers

A positive integer specifying the number of Markov chains. The default is 4.

A positive integer specifying the number of warmup (aka burnin) iterations per
chain. If step-size adaptation is on (which it is by default), this also controls
the number of iterations for which adaptation is run (and hence these warmup
samples should not be used for inference). The number of warmup iterations
should be smaller than iter and the default is iter/2.

A positive integer specifying the number of iterations for each chain (including
warmup). The default is 2000.

save the result of the sampling in memory for the current session

This is not vectorised

Value

a list of dataframes containing the prevalence, sensitivity, and specificity estimates, and a stanfit
object with the raw fit data

bayesian_panel_logit_model 11

bayesian_panel_logit_model

Bayesian logit model true prevalence for panel

Description

The beta distribution priors in this model will actually be converted to logit_normal distributions

Usage

bayesian_panel_logit_model(
panel_pos_obs,

panel_n_obs
pos_obs,
n_obs,
test_names,

’

false_pos_controls = NULL,
n_controls = NULL,
false_neg_diseased = NULL,
n_diseased = NULL,

L

sens = sens_prior(),

spec = spec
panel_sens
panel_spec
panel_name

prior(),
sens_prior(),
spec_prior(),
"Panel”,

confint = 0.95,
fmt = "%1.2F%% [%1.2f%% — %1.2f%%]1",

’

cache_result = TRUE

chains = 4,
warmup = 1000,
iter = 2000
)
Arguments

panel_pos_obs
panel_n_obs
pos_obs

n_obs

test_names

the number of positive observations for a given panel of tests
the number of observations for each component test

the number of positive observations for a given test

the number of observations for a given test

a vector of the component test names in desired order

false_pos_controls

n_controls

the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

the number of controls in the specificity disease-free control group.

12

bayesian_panel_simpler_model

false_neg_diseased

n_diseased

sens
spec
panel_sens
panel_spec
panel_name
confint
fmt

chains

warmup

iter

cache_result

Value

the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

the number of confirmed disease cases in the sensitivity control group.

not used

the prior sensitivity of the test as a beta_dist.

the prior specificity of the test as a beta_dist.

the prior sensitivity of the panel as a beta_dist (optional)

the prior specificity of the panel as a beta_dist (optional)

the name of the panel for combined result

confidence interval limits

a sprintf formatting string accepting 3 numbers

A positive integer specifying the number of Markov chains. The default is 4.

A positive integer specifying the number of warmup (aka burnin) iterations per
chain. If step-size adaptation is on (which it is by default), this also controls
the number of iterations for which adaptation is run (and hence these warmup
samples should not be used for inference). The number of warmup iterations
should be smaller than iter and the default is iter/2.

A positive integer specifying the number of iterations for each chain (including
warmup). The default is 2000.

save the result of the sampling in memory for the current session

a list of dataframes containing the prevalence, sensitivity, and specificity estimates, and a stanfit
object with the raw fit data

bayesian_panel_simpler_model

Bayesian simpler model true prevalence for panel

Description

Bayesian simpler model true prevalence for panel

Usage

bayesian_panel_simpler_model(
panel_pos_obs,

panel_n_obs,
pos_obs,
n_obs,
test_names,

bayesian_panel_simpler_model 13

false_pos_controls = NULL,
n_controls = NULL,
false_neg_diseased = NULL,
n_diseased = NULL,

L

sens = uniform_prior(),
spec = uniform_prior(),

panel_sens
panel_spec
panel_name

uniform_prior(),
uniform_prior(),
"Panel”,

confint = 0.95,
fmt = "%1.2f%% [%1.2f%% — %1.2f%%]",

’

cache_result = TRUE

chains = 4,
warmup = 1000,
iter = 2000
)
Arguments

panel_pos_obs
panel_n_obs
pos_obs

n_obs

test_names

the number of positive observations for a given panel of tests
the number of observations for each component test

the number of positive observations for a given test

the number of observations for a given test

a vector of the component test names in desired order

false_pos_controls

n_controls

the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

the number of controls in the specificity disease-free control group.

false_neg_diseased

n_diseased

sens
spec
panel_sens
panel_spec
panel_name
confint
fmt

chains

the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

the number of confirmed disease cases in the sensitivity control group.
not used

the prior sensitivity of the test as a beta_dist.

the prior specificity of the test as a beta_dist.

the prior sensitivity of the panel as a beta_dist (optional)

the prior specificity of the panel as a beta_dist (optional)

the name of the panel for combined result

confidence interval limits

a sprintf formatting string accepting 3 numbers

A positive integer specifying the number of Markov chains. The default is 4.

14 bayesian_panel_true_prevalence_model

warmup A positive integer specifying the number of warmup (aka burnin) iterations per
chain. If step-size adaptation is on (which it is by default), this also controls
the number of iterations for which adaptation is run (and hence these warmup
samples should not be used for inference). The number of warmup iterations
should be smaller than iter and the default is iter/2.

iter A positive integer specifying the number of iterations for each chain (including
warmup). The default is 2000.

cache_result save the result of the sampling in memory for the current session

Value

a list of dataframes containing the prevalence, sensitivity, and specificity estimates, and a stanfit
object with the raw fit data

bayesian_panel_true_prevalence_model
Execute one of a set of bayesian models

Description

Execute one of a set of bayesian models

Usage

bayesian_panel_true_prevalence_model (

model_type = c("logit"”, "simpler”, "complex")

)

Arguments

Arguments passed on to bayesian_panel_complex_model, bayesian_panel_simpler_model,
bayesian_panel_logit_model
test_results A dataframe containing the following columns:
¢ id (character) - the patient identifier
* test (factor) - the test type
* result (logical) - the test result
Ungrouped.
No default value.
panel_sens the prior sensitivity of the panel as a beta_dist (optional)
panel_spec the prior specificity of the panel as a beta_dist (optional)
panel_name the name of the panel for combined result
cache_result save the result of the sampling in memory for the current session

false_pos_controls the number of positives that appeared in the specificity
disease-free control group. These are by definition false positives. This is
(1-specificity)*n_controls

bayesian_panel_true_prevalence_model 15

n_controls the number of controls in the specificity disease-free control group.

false_neg_diseased the number of negatives that appeared in the sensitivity
confirmed disease group. These are by definition false negatives. This is
(1-sensitivity)*n_diseased

n_diseased the number of confirmed disease cases in the sensitivity control
group.

sens the prior sensitivity of the test as a beta_dist.

spec the prior specificity of the test as a beta_dist.

confint confidence interval limits

fmt a sprintf formatting string accepting 3 numbers

chains A positive integer specifying the number of Markov chains. The default
is 4.

iter A positive integer specifying the number of iterations for each chain (in-
cluding warmup). The default is 2000.

warmup A positive integer specifying the number of warmup (aka burnin) iter-
ations per chain. If step-size adaptation is on (which it is by default), this
also controls the number of iterations for which adaptation is run (and hence
these warmup samples should not be used for inference). The number of
warmup iterations should be smaller than iter and the defaultis iter/2.

panel_pos_obs the number of positive observations for a given panel of tests
panel_n_obs the number of observations for each component test
test_names a vector of the component test names in desired order

pos_obs the number of positive observations for a given test

n_obs the number of observations for a given test

non non

model_type The bayesian model used one of "logit", "simpler", "complex"

Value

A dataframe containing the following columns:

* test (character) - the name of the test or panel

* prevalence.lower (numeric) - the lower estimate

* prevalence.median (numeric) - the median estimate

* prevalence.upper (numeric) - the upper estimate

* prevalence.method (character) - the method of estimation

* prevalence.label (character) - a fomatted label of the true prevalence estimate with CI

Ungrouped.

No default value.

16 bayesian_true_prevalence_model

bayesian_true_prevalence_model
Execute one of a set of bayesian models

Description

Execute one of a set of bayesian models

Usage

bayesian_true_prevalence_model (..., model_type = c("logit”, "simpler"))

Arguments

Arguments passed on to bayesian_component_simpler_model, bayesian_component_logit_model

cache_result save the result of the sampling in memory for the current session
pos_obs the number of positive observations for a given test
n_obs the number of observations for a given test

false_pos_controls the number of positives that appeared in the specificity
disease-free control group. These are by definition false positives. This is
(1-specificity)*n_controls

n_controls the number of controls in the specificity disease-free control group.

false_neg_diseased the number of negatives that appeared in the sensitivity
confirmed disease group. These are by definition false negatives. This is
(1-sensitivity)*n_diseased

n_diseased the number of confirmed disease cases in the sensitivity control
group.

sens the prior sensitivity of the test as a beta_dist.

spec the prior specificity of the test as a beta_dist.

confint confidence interval limits

fmt a sprintf formatting string accepting 3 numbers

chains A positive integer specifying the number of Markov chains. The default
is 4.

iter A positive integer specifying the number of iterations for each chain (in-
cluding warmup). The default is 2000.

warmup A positive integer specifying the number of warmup (aka burnin) iter-
ations per chain. If step-size adaptation is on (which it is by default), this
also controls the number of iterations for which adaptation is run (and hence
these warmup samples should not be used for inference). The number of
warmup iterations should be smaller than iter and the default is iter/2.

model_type The bayesian model used - one of "logit" or "simpler"

beta_dist 17

Value

A dataframe containing the following columns:

* test (character) - the name of the test or panel

* prevalence.lower (numeric) - the lower estimate

* prevalence.median (numeric) - the median estimate

* prevalence.upper (numeric) - the upper estimate

* prevalence.method (character) - the method of estimation

* prevalence.label (character) - a fomatted label of the true prevalence estimate with CI

Ungrouped.

No default value.

beta_dist Generate a beta distribution out of probabilities, or positive and neg-
ative counts

Description

Generate a beta distribution out of probabilities, or positive and negative counts

Usage

beta_dist(..., p = NULL, g = NULL, n = NULL, shapel = NULL, shape2 = NULL)
Arguments

not used

p the first shape / the probability or count of success

q (optional) the second shape / the probability or count of failure

n (optional) the number of trials.

shape1 the first shape parameter (use this to force interpretation as shape)

shape2 the second shape parameter (use this to force interpretation as shape)
Value

either a single beta_dist object or a list of beta_dists

Examples

beta_dist(shapel = c(1,2,3),shape2 = c(3,2,1))
beta_dist(p = 0.7, n = 2)

18

beta_params

beta_fit Fit a beta distribution to data using method of moments

Description

Fit a beta distribution to data using method of moments

Usage
beta_fit(samples, na.rm = FALSE)

Arguments

samples a set of probabilities

na.rm should we ignore NA values
Value

abeta_dist S3 object fitted to the data.

Examples

beta_fit(stats::rbeta(10000,40,60))
beta_fit(stats::rbeta(10000,1,99))

beta_params Generate concave beta distribution parameters from mean and confi-

dence intervals

Description

Generate concave beta distribution parameters from mean and confidence intervals

Usage

beta_params(median, lower, upper, confint = .95, widen = 1, limit =1, ...)
Arguments

median the median of the probability given

lower the lower ci of the probability given

upper the upper ci of the probability given

confint the ci limits

widen widen the spread of the final beta by this factor

limit the lowest possible value for the shape parameters of the resulting beta_dist

(1 enforces that the distribution is convex)

not used

ci_to_logitnorm 19

Value

a list with shapel, shape2 values, and d, p, q and r functions

Examples

beta = beta_params(0.25, 0.1, 0.3)

ci_to_logitnorm Generate mu and sigma parameters for a logitnormal distribution

Description

The resulting logitnorm distribution will have a set median. The confidence intervals will not match
those provided as they are used as a inter-quartile range.

Usage
ci_to_logitnorm(median, lower, upper, ci = .95, fix_median = TRUE, ...)
Arguments
median the median of the
lower the lower CI
upper the upper CI
ci the confidence limits
fix_median make the median of the logitnorm be the same as the median given. This can
cause issues when very skewed distributions are used
not used
Value

a tibble with mu and sigma columns

20 format.beta_dist_list

format.beta_dist Format a beta distribution

Description

Format a beta distribution

Usage
S3 method for class 'beta_dist'
format(x, glue = .default_beta_dist_format(), ...)
Arguments
X the beta distribution
glue a glue spec taking any of shape1, shape2, conc, mean, median, upper, lower
not used
Value
nothing
Examples

format(beta_dist(shapel=3,shape2=6), "{format(mean*100, digits=3)}%")

format.beta_dist_list Format a beta distribution list

Description

Format a beta distribution list

Usage
S3 method for class 'beta_dist_list'
format(x, ...)
Arguments
X the beta distribution list
Arguments passed on to format.beta_dist
glue a glue spec taking any of shapel, shape2, conc, mean, median, upper,
lower
Value

nothing

fp_p_value 21

fp_p_value Significance of an uncertain test result

Description

Calculates a p-value for a count of positive test results based on false positive (specificity) controls.
The null hypothesis is that the prevalence of the disease is zero.

Usage

fp_p_value(
pos_obs,
n_obs,
false_pos_controls,
n_controls,
format = "%1.3g",
lim = 1e-04,
bonferroni = NULL,

)

Arguments
pos_obs the number of positive observations for a given test
n_obs the number of observations for a given test

false_pos_controls
the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. Thisis (1-specificity)#*n_controls

n_controls the number of controls in the specificity disease-free control group.
format a sprintf fmt string for the p-value
lim a lower value to display
bonferroni the number of simultaneous hypotheses that are being tested
not used
Details

This p_value does not tell you whether this count can be trusted only if the prevalence of this disease
is significantly more than zero after this observation.

Value

a vector of p-values for the count

22 fp_signif _level

Examples

calculate p-values for counts derived from 300 samples
10 observations is within noise of test

20 observations is unlikely on 1200 observations
fp_p_value(c(190,2,4,3,10,20), 1200, c(0,0,2,0,2,0)+2, 800)

if the same observations are made against a smaller group then we get
a positive result for 10
fp_p_value(c(10,2,4,3,10,20), 1000, c(2,2,4,2,4,2), 800)

tibble::tibble(
x =¢(1,2,5,10,20,40,20,20,20,20,20),
n = 1000,
fp_controls = ¢(0,0,0,0,0,0,0,1,2,3,4)+2,
n_controls = 800
) %>% dplyr::mutate(
p_value = fp_p_value(x, n, fp_controls, n_controls)
) %>% dplyr::glimpse()

fp_signif_level Identify the minimum number of positive test result observations
needed to be confident the disease has a non-zero prevalence.

Description

Identify the minimum number of positive test result observations needed to be confident the disease
has a non-zero prevalence.

Usage

fp_signif_level(
n_obs,
false_pos_controls,
n_controls,
bonferroni = NULL,

L

spec = NULL

Arguments

n_obs the number of tests performed.

false_pos_controls
the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. Thisis (1-specificity)#*n_controls

n_controls the number of controls in the specificity disease-free control group.
bonferroni the number of simultaneous tests considered.
not used

spec a prior value for specificity as a beta

get_beta_shape 23

Value

a vector of test positive counts which are the lowest significant value that could be regarded as not
due to chance.

Examples

lowest significant count of positives in 1000 tests
fp_signif_level (1000, false_pos_controls = 0:5, n_controls=800)
fp_signif_level(c(1000,800,600,400), false_pos_controls = 1:4, n_controls=800)

get_beta_shape Get a parameter of the beta_dist

Description

Get a parameter of the beta_dist

Usage

get_beta_shape(x, type = c("shapel”, "shape2”, "conc"))

Arguments
X abeta_dist or beta_dist_list acting as the prior
type the parameter to extract one of shapel or shape2 or conc
Value

a vector of doubles

Examples

get_beta_shape(beta_dist(shapel=1,shape2=1))
get_beta_shape(beta_dist(shapel=2:5,shape2=1:4))

24 get_beta_shape.beta_dist_list

get_beta_shape.beta_dist
Get a parameter of the beta_dist

Description

Get a parameter of the beta_dist

Usage

S3 method for class 'beta_dist'
get_beta_shape(x, type = c("shapel”, "shape2”, "conc"))

Arguments
X abeta_dist or beta_dist_list acting as the prior
type the parameter to extract one of shapel or shape2 or conc
Value

a vector of doubles

Examples

get_beta_shape(beta_dist(shapel=1,shape2=1))
get_beta_shape(beta_dist(shapel=2:5,shape2=1:4))

get_beta_shape.beta_dist_list
Get a parameter of the beta_dist

Description

Get a parameter of the beta_dist

Usage

S3 method for class 'beta_dist_list'
get_beta_shape(x, type = c("shapel”, "shape2”, "conc"))

Arguments
X abeta_dist or beta_dist_list acting as the prior

type the parameter to extract one of shape1 or shape2 or conc

inv_logit

Value

a vector of doubles

Examples

get_beta_shape(beta_dist(shapel=1,shape2=1))
get_beta_shape(beta_dist(shapel=2:5,shape2=1:4))

25

inv_logit The inverse logit function

Description

The inverse logit function

Usage

inv_logit(y)

Arguments

y a number between -Inf and Inf

Value

a number between 0 and 1

length.beta_dist Detect the length of a beta distribution

Description

Detect the length of a beta distribution

Usage

S3 method for class 'beta_dist'
length(x, ...)

Arguments
X the beta distribution
not used
Value

always 1

26

logit

length.beta_dist_list Detect the length of a beta distribution list

Description

Detect the length of a beta distribution list

Usage

S3 method for class 'beta_dist_list'
length(x, ...)

Arguments
X the beta distribution list
not used
Value

the length of the list

logit The logit function

Description

The logit function

Usage

logit(x)

Arguments

X a number between 0 and 1

Value

a number between -Inf and Inf

odds_ratio_ve 27

odds_ratio_ve Calculate a vaccine effectiveness estimate based on an odds ratio

Description

This assumes that OR ~ RR which is only true if controls » cases The OR method can be used in
test negative designs where disease positive relates to vaccine treatable disease and disease negative
relates to non vaccine treatable disease

This assumes that OR ~ RR which is only true if controls » cases The OR method can be used in
test negative designs where disease positive relates to vaccine treatable disease and disease negative
relates to non vaccine treatable disease

Usage

odds_ratio_ve(
vaccinatedCase,
unvaccinatedCase,
vaccinatedControl,
unvaccinatedControl,
confint = c(0.025, 0.975)

odds_ratio_ve(
vaccinatedCase,
unvaccinatedCase,
vaccinatedControl,
unvaccinatedControl,
confint = c(0.025, 0.975)

Arguments

vaccinatedCase count of disease positive vaccine positive
unvaccinatedCase

count of disease positive vaccine negative
vaccinatedControl

count of disease negative vaccine positive
unvaccinatedControl

count of disease negative vaccine positive

confint the confidence intervals

Value

a dataframe

a dataframe

28

optimal_performance

Examples

tibble::tibble(
N_vacc = 42240,
N_unvacc = 42256,
N_vacc_pn_pos = 49,
N_unvacc_pn_pos = 90
) %>% dplyr::mutate(
odds_ratio_ve(N_vacc_pn_pos, N_unvacc_pn_pos, N_vacc-N_vacc_pn_pos, N_unvacc-N_unvacc_pn_pos)

)

tibble::tibble(
N_vacc = 42240,
N_unvacc = 42256,
N_vacc_pn_pos = 49,
N_unvacc_pn_pos = 90
) %>% dplyr::mutate(
odds_ratio_ve(N_vacc_pn_pos, N_unvacc_pn_pos, N_vacc-N_vacc_pn_pos, N_unvacc-N_unvacc_pn_pos)

)

optimal_performance Test optimal performance

Description

For a given combination of prevalence, sensitivity and specificity this gives the critical threshold at
which true prevalence equals apparent prevalence

Usage

optimal_performance(p = NULL, sens = NULL, spec = NULL)

Arguments
p the prevalence or apparent prevalence
sens the sensitivity of the test
spec the specificity of the test

Value

the combination of sensitivity and specificity where apparent prevalence equals true prevalence

Examples

optimal_performance(p=0.1, sens=0.75)
optimal_performance(p=0.005, spec=0.9975)

panel_prevalence 29

panel_prevalence Expected test panel prevalence assuming independence

Description

Expected test panel prevalence assuming independence

Usage

panel_prevalence(p, na.rm = FALSE)

Arguments
p a vector of prevalences of the component tests
na.rm remove NA values?

Value

a single value for the effective specificity of the combination of the tests

Examples

panel_prevalence(p = rep(0.01,24))

panel_sens Test panel combination sensitivity

Description

Calculate the sensitivity of a combination of tests, where the tests are testing for different conditions
and positive results are combined into a panel using a logical OR. Because false negatives from
each component of a panel can be cancelled out by true positives, or false positives from other
components of the test depending on the prevalence of the underlying conditions, the combined
false negative rate is lower the more cases there arecombine the false positive rate for the panel is
higher than the individual components (and hence the true negative rate a.k.a specificity is lower).

Usage

panel_sens(p, sens, spec, na.rm = FALSE)

Arguments
p the true prevalence (one of p or ap must be given)
sens a vector of sensitivities of the component tests
spec a vector of specificity of the component tests

na.rm remove NA values?

30 panel_sens_estimator
Value

an effective specificity for the combination of the tests

Examples

#TODO

panel_sens_estimator Estimate test panel combination sensitivity

Description

Estimate the sensitivity of a combination of tests, where the tests are testing for different conditions
and positive results are combined into a panel using a logical OR. Because false negatives from
each component of a panel can be cancelled out by true positives, or false positives from other
components of the test depending on the prevalence of the underlying conditions, the combined
false negative rate is lower the more cases there arecombine the false positive rate for the panel is
higher than the individual components (and hence the true negative rate a.k.a specificity is lower).

Usage

panel_sens_estimator(ap, sens, spec, na.rm = FALSE)

Arguments
ap the apparent prevalence or test positivity (one of p or ap must be given)
sens a vector of sensitivities of the component tests
spec a vector of specificity of the component tests
na.rm remove NA values?
Value

an effective specificity for the combination of the tests

Examples

#TODO

panel_spec 31

panel_spec Test panel combination specificity

Description

Calculate the specificity of a combination of tests, where the tests are testing for different conditions
and positive results are combined into a panel using a logical OR. Because false positives from each
component of a panel combine the false positive rate for the panel is higher than the individual
components (and hence the true negative rate a.k.a specificity is lower).

Usage

panel_spec(spec, na.rm = FALSE)

Arguments
spec a vector of specificity of the component tests
na.rm remove NA values?

Value

a single value for the effective specificity of the combination of the tests

Examples

panel_spec(spec = rep(0.9975,24))

prevalence_lang_reiczigel
True prevalence from apparent prevalence with uncertainty

Description

Uses lang-reiczigel estimators to incorporate uncertainty of sensitivity and specificity into an esti-
mate of true prevalence from a given value of apparent prevalence.

Usage

prevalence_lang_reiczigel(
pos_obs,
n_obs,
false_pos_controls = NULL,
n_controls = NULL,
false_neg_diseased
n_diseased = NULL,

NULL,

32 prevalence_panel_lang_reiczigel

spec = spec_prior(),

sens = sens_prior(),

confint = 0.95,

fmt = "%1.2f%% [%1.2f%% — %1.2f%%]"

)

Arguments
pos_obs the number of positive observations for a given test
n_obs the number of observations for a given test

false_pos_controls
the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

n_controls the number of controls in the specificity disease-free control group.

false_neg_diseased
the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

n_diseased the number of confirmed disease cases in the sensitivity control group.
not used
spec the prior specificity of the test as a beta_dist.
sens the prior sensitivity of the test as a beta_dist.
confint confidence interval limits
fmt a sprintf formatting string accepting 3 numbers
Value

the expected value of apparent prevalence

prevalence_panel_lang_reiczigel
Lang-Reiczigel true prevalence for panel

Description

Uses resampling to incorporate uncertainty of sensitivity and specificity into an estimate of true
prevalence from a given value of apparent prevalence.

prevalence_panel_lang_reiczigel 33

Usage

prevalence_panel_lang_reiczigel(
panel_pos_obs,

panel_n_obs,
pos_obs,
n_obs,

false_pos_controls = NULL,

n_controls =

NULL,

false_neg_diseased = NULL,
n_diseased = NULL,

L

spec

spec_prior(),

sens = sens_prior(),

confint = 0.95,

fmt = "%1.2F%% [%1.2F%% — %1.2f%%]1",
samples = 1000

Arguments

panel_pos_obs
panel_n_obs
pos_obs

n_obs

the number of positive observations for a given panel of tests
a vector of the number of observations for each component test
the number of positive observations for a given test

the number of observations for a given test

false_pos_controls

n_controls

the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

the number of controls in the specificity disease-free control group.

false_neg_diseased

n_diseased

spec
sens
confint
fmt

samples

Details

the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

the number of confirmed disease cases in the sensitivity control group.

Arguments passed on to prevalence_lang_reiczigel

the prior specificity of the test as a beta_dist.
the prior sensitivity of the test as a beta_dist.
confidence interval limits

a sprintf formatting string accepting 3 numbers

number of random draws of sensitivity and specificity (optional - default 1000)

This is not vectorised

34

Value

the expected value of apparent prevalence

Examples

#TODO

print.beta_dist_list

print.beta_dist Print a beta distribution

Description

Print a beta distribution

Usage

S3 method for class 'beta_dist'
print(x, ...)

Arguments
X the beta distribution
not used
Value
nothing

print.beta_dist_list Print a beta distribution

Description

Print a beta distribution

Usage

S3 method for class 'beta_dist_list'
print(x, ...)

Arguments
X the beta distribution
not used
Value

nothing

relative_risk_ve 35

relative_risk_ve Calculate a vaccine effectiveness estimate based on a risk ratio

Description

The RR method cannot be used in test negative designs where disease positive relates to vaccine
treatable disease and disease negative relates to non vaccine treatable disease. It is only relevant in
prospective designs with a vaccinated and unvaccinated group.

Usage

relative_risk_ve(
vaccinatedCase,
unvaccinatedCase,
vaccinatedControl,
unvaccinatedControl,
confint = c(0.025, 0.975)

Arguments

vaccinatedCase count of disease positive vaccine positive
unvaccinatedCase

count of disease positive vaccine negative
vaccinatedControl

count of disease negative vaccine positive
unvaccinatedControl

count of disease negative vaccine positive

confint the confidence intervals

Value

a dataframe

Examples

tibble::tibble(
N_vacc = 42240,
N_unvacc = 42256,
N_vacc_pn_pos = 49,
N_unvacc_pn_pos = 90
) %>% dplyr::mutate(
relative_risk_ve(N_vacc_pn_pos, N_unvacc_pn_pos, N_vacc-N_vacc_pn_pos, N_unvacc-N_unvacc_pn_pos)

)

dplyr::bind_rows(lapply(
c("katz.log"”, "adj.log"”, "bailey", "koopman”, "noether”, "sinh-1", "boot"),

36 rogan_gladen

function(m) {tibble::as_tibble(
1-DescTools: :BinomRatioCI(N_vacc_pn_pos, N_vacc, N_unvacc_pn_pos, N_unvacc, method = m)
) %% dplyr::mutate(
method = m
#0)2
#))
rep.beta_dist Repeat a beta_dist
Description

Repeat a beta_dist

Usage
S3 method for class 'beta_dist'
rep(x, times, ...)
Arguments
X abeta_dist
times n
not used
Value

abeta_dist_list

rogan_gladen True prevalence from apparent prevalence

Description

This estimator runs into problems with small AP as the Rogan-Gladen conversion is really using
expected apparent prevalence. Getting the expected value of the AP distribution is complex and
the expected value given a single observation is not in general the ratio of positives / count. The
expected apparent prevalence is never less than the specificity but the observed value often is. To
deal with this the R-G estimator truncates at zero.

Usage

rogan_gladen(ap, sens, spec)

sens_prior 37

Arguments
ap the expected apparent prevalence.
sens the sensitivity of the test
spec the specificity of the test

Value

the estimate of ’true prevalence’

Examples

rogan_gladen(50/200, @.75, 0.97)

sens_prior The default prior for specificity

Description

If undefined this is 0.70 (0.11 - 1.00). This can be set with options(testerror.sens_prior = beta_dist(p=??, n=??))

Usage

sens_prior()

Value

abeta_dist

spec_prior The default prior for specificity

Description

If undefined this is 0.98 (0.71 - 1.00). This can be set with options(testerror.spec_prior = beta_dist(p=??, n=27))

Usage

spec_prior()

Value

abeta_dist

38 true_panel_prevalence

true_panel_prevalence Calculate an estimate of true prevalence for a single panel and com-
ponents

Description

Uses apparent prevalence, and uncertain estimates of test sensitivity and test specificity for the
3 methods described in Supplementary 2. This function works for a single panel per dataframe,
multiple panels will need to call this function multiple times in a group_modify.

Usage

true_panel_prevalence(
test_results = testerror::.input_data,
false_pos_controls = NULL,
n_controls = NULL,
false_neg_diseased = NULL,
n_diseased = NULL,

L

sens = NULL,

spec = NULL,
panel_name = "Panel”,
confint = 0.95,
method = c("rogan-gladen”, "lang-reiczigel”, "bayes"),
na.rm = TRUE
)
Arguments

test_results A dataframe containing the following columns:

¢ id (character) - the patient identifier
* test (factor) - the test type
* result (logical) - the test result

Ungrouped.
No default value.
false_pos_controls
the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls
n_controls the number of controls in the specificity disease-free control group.

false_neg_diseased
the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

n_diseased the number of confirmed disease cases in the sensitivity control group.

true_panel_prevalence 39

Arguments passed on to uncertain_panel_rogan_gladen, prevalence_panel_lang_reiczigel,
bayesian_panel_complex_model, bayesian_panel_true_prevalence_model,
bayesian_panel_simpler_model, bayesian_panel_logit_model

samples number fo random draws of sensitivity and specificity

fmt a sprintf formatting string accepting 3 numbers

panel_sens the prior sensitivity of the panel as a beta_dist (optional)

panel_spec the prior specificity of the panel as a beta_dist (optional)

cache_result save the result of the sampling in memory for the current session

chains A positive integer specifying the number of Markov chains. The default
is 4.

iter A positive integer specifying the number of iterations for each chain (in-
cluding warmup). The default is 2000.

warmup A positive integer specifying the number of warmup (aka burnin) iter-
ations per chain. If step-size adaptation is on (which it is by default), this
also controls the number of iterations for which adaptation is run (and hence
these warmup samples should not be used for inference). The number of
warmup iterations should be smaller than iter and the defaultis iter/2.

non "non

model_type The bayesian model used one of "logit", "simpler", "complex"

sens the prior sensitivity of the test as a beta_dist.
spec the prior specificity of the test as a beta_dist.
panel_name the name of the panel for combined result
confint confidence interval limits

method one of:

* "lang-reiczigel": Frequentist confidence limits
* "bayes": Bayesian analysis
* "rogan-gladen": Rogan gladen with uncertainty

na.rm exclude patients with missing results

Value

A dataframe containing the following columns:

* test (character) - the name of the test or panel

* prevalence.lower (numeric) - the lower estimate

* prevalence.median (numeric) - the median estimate

* prevalence.upper (numeric) - the upper estimate

* prevalence.method (character) - the method of estimation

* prevalence.label (character) - a fomatted label of the true prevalence estimate with CI

Ungrouped.

No default value.

40 true_prevalence

Examples

tmp = testerror:::panel_example()
true_panel_prevalence(
test_results = tmp$samples %>% dplyr::select(id,test,result = observed),
false_pos_controls = tmp$performance$false_pos_controls,
n_controls = tmp$performance$n_controls,
false_neg_diseased = tmp$performance$false_neg_diseased,
n_diseased = tmp$performance$n_diseased,

method = "rogan-gladen”
)
true_prevalence Vectorised true prevalence estimates
Description

Calculate an estimate of true prevalence from apparent prevalence, and uncertain estimates of test
sensitivity and test specificity, using one of 3 methods.

Usage
true_prevalence(
pos_obs,
n_obs,
false_pos_controls = NULL,
n_controls = NULL,
false_neg_diseased = NULL,
n_diseased = NULL,
confint = 0.95,
method = c("lang-reiczigel”, "rogan-gladen”, "bayes"),
spec = NULL,
sens = NULL
)
Arguments
pos_obs the number of positive observations for a given test
n_obs the number of observations for a given test

false_pos_controls
the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

n_controls the number of controls in the specificity disease-free control group.
false_neg_diseased

the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

uncertain_panel_rogan_gladen 41

n_diseased the number of confirmed disease cases in the sensitivity control group.
confint confidence interval limits
method one of:

* "lang-reiczigel": Frequentist confidence limits: see prevalence_lang_reiczigel()

* "rogan-gladen": Rogan gladen incorporating uncertainty with resampling:
see uncertain_rogan_gladen()
* "bayes": Bayesian analysis: see bayesian_component_simpler_model()

Arguments passed on to uncertain_rogan_gladen

samples number fo random draws of sensitivity and specificity
fmt a sprintf formatting string accepting 3 numbers
seed set seed for reproducibility

spec the prior specificity of the test as a beta_dist.
sens the prior sensitivity of the test as a beta_dist.
Value

A dataframe containing the following columns:

* test (character) - the name of the test or panel

* prevalence.lower (numeric) - the lower estimate

* prevalence.median (numeric) - the median estimate

* prevalence.upper (numeric) - the upper estimate

* prevalence.method (character) - the method of estimation

* prevalence.label (character) - a fomatted label of the true prevalence estimate with CI

Ungrouped.

No default value.

Examples

true_prevalence(c(1:50), 200, 2, 800, 25, 75)
true_prevalence(c(1:10)*2, 200, 25, 800, 1, 6, method="rogan-gladen")
true_prevalence(c(1:10)*2, 200, 5, 800, 1, 6, method="bayes")

uncertain_panel_rogan_gladen
Rogan-Gladen true prevalence for panel with resampling

Description

Uses resampling to incorporate uncertainty of sensitivity and specificity into an estimate of true
prevalence from a given value of apparent prevalence.

42

Usage

uncertain_panel_rogan_gladen

uncertain_panel_rogan_gladen(
panel_pos_obs,

panel_n_obs,
pos_obs,
n_obs,

false_pos_controls = NULL,

n_controls =

NULL,

false_neg_diseased = NULL,
n_diseased = NULL,

L

sens

sens_prior(),

spec = spec_prior(),

confint = 0.95,

fmt = "%1.2f%% [%1.2f%% — %1.2f%%]1",
samples = 1000

Arguments

panel_pos_obs
panel_n_obs
pos_obs

n_obs

the number of positive observations for a given panel of tests
the number of observations for each component test
the number of positive observations for a given test

the number of observations for a given test

false_pos_controls

n_controls

the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

the number of controls in the specificity disease-free control group.

false_neg_diseased

n_diseased

sens
spec
confint
fmt

samples

Details

the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

the number of confirmed disease cases in the sensitivity control group.
Arguments passed on to uncertain_rogan_gladen

seed set seed for reproducibility

the prior sensitivity of the test as a beta_dist.

the prior specificity of the test as a beta_dist.

confidence interval limits

a sprintf formatting string accepting 3 numbers

number fo random draws of sensitivity and specificity

This is not vectorised

uncertain_panel_sens_estimator 43

Value

the expected value of apparent prevalence

uncertain_panel_sens_estimator
Propagate component test sensitivity and specificity into panel speci-
ficity assuming a known set of observations of component apparent
prevalence

Description

Propagate component test sensitivity and specificity into panel specificity assuming a known set of
observations of component apparent prevalence

Usage
uncertain_panel_sens_estimator(
pos_obs,
n_obs,
false_pos_controls = NULL,
n_controls = NULL,
false_neg_diseased = NULL,
n_diseased = NULL,
sens = sens_prior(),
spec = spec_prior(),
samples = 1000,
fit_beta = FALSE
)
Arguments
pos_obs the number of positive observations for a given test
n_obs the number of observations for a given test

false_pos_controls
the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

n_controls the number of controls in the specificity disease-free control group.
false_neg_diseased
the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

n_diseased the number of confirmed disease cases in the sensitivity control group.
not used

sens the prior sensitivity of the test as a beta_dist.

44 uncertain_panel_spec
spec the prior specificity of the test as a beta_dist.
samples number fo random draws of sensitivity and specificity
fit_beta return the result as a beta_dist object?
Value
a vector of possible sensitivity values
Examples

uncertain_panel_sens_estimator(

pos_

obs = ¢(30,10,20,10,5), n_obs=1000,

false_pos_controls = ¢(20,15,15,15,15), n_controls = c(800,800,800,800,800),
false_neg_diseased = c(20,25,20,20,15), n_diseased = c(100,100,100,100,100),

fit_

beta = TRUE)

uncertain_panel_spec Propagate component test specificity into panel specificity

Description

Propagate component test specificity into panel specificity

Usage

uncertain_panel_spec(
false_pos_controls = NULL,
n_controls = NULL,

spec = spec_prior(),
samples = 1000,
na.rm = FALSE,
fit_beta = FALSE

Arguments

false_pos_controls

the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

n_controls the number of controls in the specificity disease-free control group.
not used

spec the prior specificity of the test as a beta_dist.

samples number fo random draws of sensitivity and specificity

na.rm remove missing values

fit_beta return the result as a beta_dist object?

uncertain_rogan_gladen 45

Value

a vector of possible specificities for the panel or a fitted beta_dist

Examples

uncertain_panel_spec(c(2,3,4,2,2), c(800,800,800,800,800), fit_beta=TRUE)

uncertain_rogan_gladen
True prevalence from apparent prevalence with uncertainty

Description

Uses resampling to incorporate uncertainty of sensitivity and specificity into an estimate of true
prevalence from a given value of apparent prevalence.

Usage

uncertain_rogan_gladen(
pos_obs,
n_obs,
false_pos_controls
n_controls = NULL,
false_neg_diseased
n_diseased = NULL,

NULL,

NULL,

spec = spec_prior(),

sens = sens_prior(),

samples = 1000,

confint = 0.95,

fmt = "%1.2F%% [%1.2f%% — %1.2f%%]1",

seed = NA
)
Arguments
pos_obs the number of positive observations for a given test
n_obs the number of observations for a given test

false_pos_controls
the number of positives that appeared in the specificity disease-free control
group. These are by definition false positives. This is (1-specificity)*n_controls

n_controls the number of controls in the specificity disease-free control group.

false_neg_diseased
the number of negatives that appeared in the sensitivity confirmed disease group.
These are by definition false negatives. This is (1-sensitivity)*n_diseased

46

n_diseased

spec
sens
samples
confint
fmt

seed

Value

underestimation_threshold

the number of confirmed disease cases in the sensitivity control group.
not used

the prior specificity of the test as a beta_dist.

the prior sensitivity of the test as a beta_dist.

number fo random draws of sensitivity and specificity

confidence interval limits

a sprintf formatting string accepting 3 numbers

set seed for reproducibility

the expected value of apparent prevalence

Examples

uncertain_rogan_gladen(

pos_obs =

20, n_obs = 1000,
false_pos_controls = 10, n_controls
false_neg_diseased = 20, n_diseased

800,
100)

uncertain_rogan_gladen(
pos_obs = 5, n_obs = 1000,
sens = beta_dist(p=0.75,n=200),
spec = beta_dist(p=0.9975, n=800))

uncertain_rogan_gladen(

pos_obs =

c(5,10), n_obs = c(1000,1000),

false_pos_controls = c(2,1), n_controls = c(800,800),
false_neg_diseased = c(25,20),n_diseased = c(100,100))

underestimation_threshold

Test underestimation limit

Description

For a given sensitivity and specificity this give the critical threshold after which test error introduces
underestimation rather than over estimation

Usage

underestimation_threshold(sens, spec)

Arguments

sens

spec

the sensitivity of the test

the specificity of the test

uniform_prior

Value

the value where apparent prevalence equals true prevalence

Examples

tmp1 = underestimation_threshold(@.75, 0.97)
tmp2 = rogan_gladen(tmpl1, 0.75, 0.97)
if (abs(tmpl-tmp2) > 0.0000001) stop("error")

47

uniform_prior

A uniform prior

Description

A uniform prior

Usage

uniform_prior()

Value

abeta_dist

uninformed_prior

Uninformative prior

Description

Uninformative prior

Usage

uninformed_prior()

Value

abeta_dist

48

update_posterior.beta_dist

update_posterior Update the posterior of a beta_dist

Description

Update the posterior of a beta_dist

Usage

update_posterior(x, ..., pos = NULL, neg = NULL, n = NULL)
Arguments

X abeta_dist or beta_dist_list acting as the prior

not used

pos positive observation(s)

neg negative observation(s)

n number observations
Value

anew beta_dist obeta_dist_list

Examples

update_posterior(beta_dist(shapel=1,shape2=1), neg=10, n=30)

update_posterior.beta_dist
Update the posterior of a beta_dist

Description

Update the posterior of a beta_dist

Usage

S3 method for class 'beta_dist'
update_posterior(x, ..., pos = NULL, neg = NULL, n = NULL)

update_posterior.beta_dist_list 49

Arguments
X abeta_dist or beta_dist_list acting as the prior
not used
pos positive observation(s)
neg negative observation(s)
n number observations
Value

anew beta_dist obeta_dist_list

Examples

update_posterior(beta_dist(shapel=1,shape2=1), neg=10, n=30)

update_posterior.beta_dist_list
Update the posterior of a beta_dist

Description

Update the posterior of a beta_dist

Usage
S3 method for class 'beta_dist_list'
update_posterior(x, ..., pos = NULL, neg = NULL, n = NULL)
Arguments
X abeta_dist or beta_dist_list acting as the prior
not used
pos positive observation(s)
neg negative observation(s)
n number observations
Value

anew beta_dist obeta_dist_list

Examples

update_posterior(beta_dist(shapel=1,shape2=1), neg=10, n=30)

Index

+ data
.input_data, 3
.input_panel_data, 3
.output_data, 4
.input_data, 3
.input_panel_data, 3
.output_data, 4

apparent_prevalence, 5
as_tibble.beta_dist, 5,6
as_tibble.beta_dist_list, 6

bayesian_component_logit_model, 6, 16
bayesian_component_simpler_model, 8, 16
bayesian_panel_complex_model, 9, 14, 39
bayesian_panel_logit_model, 11, /4, 39
bayesian_panel_simpler_model, 12, 14, 39
bayesian_panel_true_prevalence_model
14, 39
bayesian_true_prevalence_model, 16
beta_dist, 17
beta_fit, 18
beta_params, 18

ci_to_logitnorm, 19

format.beta_dist, 20, 20
format.beta_dist_list, 20
fp_p_value, 21
fp_signif_level, 22

get_beta_shape, 23
get_beta_shape.beta_dist, 24
get_beta_shape.beta_dist_list, 24

inv_logit, 25
length.beta_dist, 25

length.beta_dist_list, 26
logit, 26

50

odds_ratio_ve, 27
optimal_performance, 28

panel_prevalence, 29

panel_sens, 29

panel_sens_estimator, 30

panel_spec, 31
prevalence_lang_reiczigel, 31, 33
prevalence_panel_lang_reiczigel, 32, 39
print.beta_dist, 34
print.beta_dist_list, 34

relative_risk_ve, 35
rep.beta_dist, 36
rogan_gladen, 36

sens_prior, 37
spec_prior, 37

true_panel_prevalence, 38
true_prevalence, 40

uncertain_panel_rogan_gladen, 39, 41
uncertain_panel_sens_estimator, 43
uncertain_panel_spec, 44
uncertain_rogan_gladen, 41, 42, 45
underestimation_threshold, 46
uniform_prior, 47
uninformed_prior, 47
update_posterior, 48
update_posterior.beta_dist, 48
update_posterior.beta_dist_list, 49

	.input_data
	.input_panel_data
	.output_data
	apparent_prevalence
	as_tibble.beta_dist
	as_tibble.beta_dist_list
	bayesian_component_logit_model
	bayesian_component_simpler_model
	bayesian_panel_complex_model
	bayesian_panel_logit_model
	bayesian_panel_simpler_model
	bayesian_panel_true_prevalence_model
	bayesian_true_prevalence_model
	beta_dist
	beta_fit
	beta_params
	ci_to_logitnorm
	format.beta_dist
	format.beta_dist_list
	fp_p_value
	fp_signif_level
	get_beta_shape
	get_beta_shape.beta_dist
	get_beta_shape.beta_dist_list
	inv_logit
	length.beta_dist
	length.beta_dist_list
	logit
	odds_ratio_ve
	optimal_performance
	panel_prevalence
	panel_sens
	panel_sens_estimator
	panel_spec
	prevalence_lang_reiczigel
	prevalence_panel_lang_reiczigel
	print.beta_dist
	print.beta_dist_list
	relative_risk_ve
	rep.beta_dist
	rogan_gladen
	sens_prior
	spec_prior
	true_panel_prevalence
	true_prevalence
	uncertain_panel_rogan_gladen
	uncertain_panel_sens_estimator
	uncertain_panel_spec
	uncertain_rogan_gladen
	underestimation_threshold
	uniform_prior
	uninformed_prior
	update_posterior
	update_posterior.beta_dist
	update_posterior.beta_dist_list
	Index

