Package: tableone 0.4.3

Robert Challen

tableone: Descriptive Tables for Observational or Interventional Studies

Generating tabular summaries of data in a format suitable for reporting in journal articles is fiddly and slows down more detailed analysis. Comparing two populations with respect to an intervention, and reporting it is a task that can be largely automated.

Authors:Robert Challen [aut, cre]

tableone_0.4.3.tar.gz
tableone_0.4.3.zip(r-4.5)tableone_0.4.3.zip(r-4.4)tableone_0.4.3.zip(r-4.3)
tableone_0.4.3.tgz(r-4.4-any)tableone_0.4.3.tgz(r-4.3-any)
tableone_0.4.3.tar.gz(r-4.5-noble)tableone_0.4.3.tar.gz(r-4.4-noble)
tableone_0.4.3.tgz(r-4.4-emscripten)tableone_0.4.3.tgz(r-4.3-emscripten)
tableone.pdf |tableone.html
tableone/json (API)

# Install 'tableone' in R:
install.packages('tableone', repos = c('https://bristol-vaccine-centre.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/bristol-vaccine-centre/tableone/issues

Pkgdown site:https://bristol-vaccine-centre.github.io

Datasets:

On CRAN:

9.77 score 5 stars 12 packages 2.3k scripts 14k downloads 78 mentions 22 exports 38 dependencies

Last updated 1 years agofrom:6e45c8b0b7 (on 0.4.3). Checks:1 OK, 6 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKJan 10 2025
R-4.5-winNOTEJan 10 2025
R-4.5-linuxNOTEJan 10 2025
R-4.4-winNOTEJan 10 2025
R-4.4-macNOTEJan 10 2025
R-4.3-winNOTEJan 10 2025
R-4.3-macNOTEJan 10 2025

Exports:%>%as_t1_shapeas_t1_signifas_t1_summarycompare_missingcompare_outcomescompare_populationcount_tablecut_integerdescribe_datadescribe_populationexplicit_naextract_comparisonextract_unitsformat_pvalueget_footer_textgroup_comparisonlabel_extractormake_factorsremove_missingset_labelsset_units

Dependencies:assertthatbackportsbase64encbinombroomcachemclicommonmarkcpp11digestdplyrfansifastmapforcatsgenericsgluehtmltoolshuxtablelifecyclemagrittrmemoisenortestpillarpkgconfigpurrrpwrR6rlangstringistringrsystemfontstibbletidyrtidyselectutf8vctrswithrxml2

tableone: Configuration

Rendered fromconfiguration.Rmdusingknitr::rmarkdownon Jan 10 2025.

Last update: 2023-09-05
Started: 2022-10-17

tableone: Getting started

Rendered fromtableone.Rmdusingknitr::rmarkdownon Jan 10 2025.

Last update: 2023-10-03
Started: 2022-10-17

Readme and manuals

Help Manual

Help pageTopics
Convert a 't1_summary' object to a 'huxtable'as_huxtable.t1_shape
Convert a 't1_signif' S3 class to a huxtableas_huxtable.t1_signif
Convert a 't1_summary' object to a 'huxtable'as_huxtable.t1_summary
Summarise a data setas_t1_shape
Compares the population against an interventionas_t1_signif
Summarise a populationas_t1_summary
A list of columns for a test casebad_test_cols
Compares missing data against an intervention in a summary tablecompare_missing
Compares multiple outcomes against an intervention in a summary tablecompare_outcomes
Compares the population against an intervention in a summary tablecompare_population
Group data count and calculate proportions by column.count_table
Cut and label an integer valued quantitycut_integer
Default table layout functionsdefault.format
Describe the data types and consistencedescribe_data
Describe the population in a summary tabledescribe_population
A copy of the diamonds datasetdiamonds
Make NA values in factor columns explicitexplicit_na
Get summary comparisons and statistics between variables as raw data.extract_comparison
Extracts units set as dataframe column attributesextract_units
Format a p-valueformat_pvalue
Get footer text if availableget_footer_text
Extract one or more comparisons for inserting into text.group_comparison
Extract labels from a dataframe column attributeslabel_extractor
Convert discrete data to factorsmake_factors
A copy of the diamonds datasetmissing_diamonds
Missing not at random 2 class 1000 itemsmnar_two_class_1000
A multi-class dataset with equal random samples in each classmulti_class_negative
A single-class dataset with 100 items of random dataone_class_test_100
A single-class dataset with 1000 items of random dataone_class_test_1000
Remove variables that fail a missing data test from modelsremove_missing
Set a label attributeset_labels
Titleset_units
A list of columns for a test casetest_cols
A two-class dataset with random datatwo_class_test